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ABSTRACT

In this study, we examine the impact of information-driven awareness on the spread of an epidemic from the perspective of resource allocation
by comprehensively considering a series of realistic scenarios. A coupled awareness-resource-epidemic model on top of multiplex networks
is proposed, and a Microscopic Markov Chain Approach is adopted to study the complex interplay among the processes. Through theoretical
analysis, the infection density of the epidemic is predicted precisely, and an approximate epidemic threshold is derived. Combining both
numerical calculations and extensive Monte Carlo simulations, the following conclusions are obtained. First, during a pandemic, the more
active the resource support between individuals, the more effectively the disease can be controlled; that is, there is a smaller infection density
and a larger epidemic threshold. Second, the disease can be better suppressed when individuals with small degrees are preferentially protected.
In addition, there is a critical parameter of contact preference at which the effectiveness of disease control is the worst. Third, the inter-layer
degree correlation has a “double-edged sword” effect on spreading dynamics. In other words, when there is a relatively lower infection rate,
the epidemic threshold can be raised by increasing the positive correlation. By contrast, the infection density can be reduced by increasing the
negative correlation. Finally, the infection density decreases when raising the relative weight of the global information, which indicates that
global information about the epidemic state is more efficient for disease control than local information.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092031

The suppression of an epidemic is inseparable from the effective
deployment of both public and personal resources, which has long
been a vital epidemiological problem. In particular, the deploy-
ment of personal resources is influenced by the information-
driven awareness of individuals and is adjusted dynamically with
the spread of the epidemic. In turn, efficient deployment of
personal resources can affect the dynamic characteristics of an
epidemic. A systematic study of the interaction between the pro-
cesses of awareness, resource allocation, and epidemic spreading
will be of prime significance in the containment of the epi-
demic. Here, by considering a series of realistic factors, such as
the preferential contact among individuals, the different types
of information, and the structure of the underlying networks,
we systematically study the impact of awareness that is stim-
ulated by epidemic-related information on the spread of the

epidemic. Through both theoretical analysis and Monte Carlo
simulations, we find that during a pandemic, resource support
among individuals should be more active to suppress the spread
of the epidemic. In addition, an epidemic can be suppressed more
efficiently when nodes with small degrees are preferentially pro-
tected. Moreover, we find that the inter-layer degree correlation
has a “double-edged sword” effect on the spreading dynamics.
In other words, when there is a relatively lower infection rate,
the epidemic threshold can be raised by increasing the positive
correlation. By contrast, the infection density can be reduced
by increasing the negative correlation. Finally, we find that the
infection density decreases when raising the relative weight of
the global information, which indicates that global information
about the epidemic state is more efficient for disease control than
local information.
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I. INTRODUCTION

The ultimate goals of studying epidemic dynamics on com-
plex networks are the prevention and control of diseases, and ade-
quate resources are a prerequisite to achieve these goals. However,
resources, such as medicines, vaccines, and medical facilities, are
often insufficient to meet the treatment and immunization needs of
large numbers of infected cases and vulnerable populations induced
by the rapid outbreak of an infectious disease.1,2 For example, as
of 15 March 2022, the ongoing coronavirus disease 2019 pandemic
propagated at a breakneck speed, leading to the infection of more
than 460 million people as well as over 6 million deaths.3 The
surge in the confirmed cases poses a major challenge to the public
health system, inducing a critical shortage of medical and protec-
tive resources as well as a devastating socio-economic impact on
countries around the world,4–6 which leads to a decline in overall
recovery rates and an increase in mortality as it prevents the infected
people from obtaining timely testing and treatment.7 Moreover, the
shortage of protective supplies, such as face masks and disinfectants,
increases the probability of exposure of susceptible individuals to the
virus, which leads to a higher infection probability and consequently
accelerates the propagation of the virus.8

Extensive practices have demonstrated that both public inter-
vention measures, including international and domestic travel
restrictions, closing schools, and strictly limited public gatherings,
adopted by many countries, and personal protective measures, such
as social distancing, self-isolation, and hand washing, can signifi-
cantly mitigate the burden of infection.9,10 However, more impor-
tant, is the efficient use of limited resources to improve recovery
rates and reduce mortality and infection rates. Consequently, effi-
cient allocation of scarce resources plays a vital role in the con-
tainment and mitigation of virus propagation during the pandemic.
Many scholars have conducted in-depth research from different per-
spectives using both theoretical modeling and mathematical analysis
combined with extensive experimental simulation methods.11,12 For
example, by proposing a convex framework, the authors of Refs. 13
and 14 solved the problem of determining a cost-optimal allocation
of resources. Chen et al.15 studied the problem of optimal deploy-
ment of limited resources to minimize the prevalence of the disease.
Using both the quenched mean-field theory and heterogeneous
mean-field approaches, they found that the problem can be solved
based on the condition that the cure rate of the node is positively
correlated with the medical resource. The above representatives con-
sider the optimal problem statically. Another line of work consider
that an efficient strategy of resource allocation should incorporate
the dynamic characteristics of the spread of the epidemic.15–17 A typ-
ical example is the research conducted by the authors of Ref. 16.
Based on a scalable dynamic message-passing method, the authors
proposed a universal framework to address these problems.

Although a large body of literature has addressed the opti-
mal problem under certain conditions, a more efficient strategy
of resource deployment should encompass more than the struc-
ture of underlying networks and spreading dynamics based on a
simple epidemic model. In a more realistic scenario, an epidemic
evolves dynamically with the diffusion of information. Specifically,
disease transmission stimulates the diffusion of information through
various channels, which induces the awareness of susceptible

individuals and alters their behaviors, such as maintaining social dis-
tancing and wearing face masks.18 Changes in individual behavior
can, in turn, influence the spreading dynamics of the epidemic by
affecting the effective infection rate of the disease or the susceptibil-
ity of individuals.19–22 Consequently, it is essential to systematically
understand the interaction mechanisms between awareness and epi-
demic spread in designing more realistic and efficient strategies for
resource allocation.23–26 The literature Ref. 27 has made the semi-
nal work on studying the coevolution of awareness and disease on
networks, and the authors found that the spread of the disease can
be suppressed by the diffusion of the awareness. Granell et al.28,29

studied the interaction between awareness diffusion and disease
spreading on multiplex networks and revealed the existence of a
critical value of the epidemic threshold, which is determined by the
awareness and structure of the social layer. Benefitting from previ-
ous research, the interaction between resource allocation, awareness,
and epidemic propagation has become a new research hotspot. The
authors of Refs. 30 and 31 considered that awareness diffusion in
virtual social networks cannot only change the daily behavior of
individuals but also affect mutual assistance of resources among
individuals. Resource support among friends during a pandemic is
of prime importance to protect susceptible individuals from infec-
tion, especially when resources are severely scarce. Inspired by this,
Wang et al.32 studied the interplay between the processes of resource
allocation, information diffusion and epidemic spreading on multi-
plex networks. Through theoretical analysis and simulation verifica-
tion, they found that information diffusion and resource allocation
cannot only affect the spread size of the epidemic, but also lead to
distinct phase transitions underlying the epidemic outbreak. More-
over, the authors of Ref. 33 investigated the interaction between
these three processes by adapting a metapopulation model. By con-
sidering the real social factors that can affect the coupled dynamics
of the processes, they found that both information and geography
can significantly impact the spread of the disease.

Despite extensive work on the interplay among resource allo-
cation, information diffusion, and epidemic spreading, there are
several scenarios that these studies have not considered. On one
hand, because people in real life have limited energy and time to
contact others,34 they will interact selectively with each other dur-
ing a small time interval, which will largely influence the spreading
dynamics of the epidemic. Conversely, people acquire information
about the epidemic from various channels, such as the global num-
ber of infected populations from social network platforms or mass
media, and the number of infected neighbors from mouth to mouth
in neighborhoods. Different types of information can induce differ-
ent levels of concern in individuals. For example, the information
about an infected neighbor has a more intuitive effect on an indi-
vidual than the information on the global number of infected indi-
viduals acquired from television. Consequently, it is of interest and
significance to understand how preferential contact among individ-
uals and different types of information affect the coupled dynamics
of awareness, resource allocation, and epidemic spreading.

To address these problems, an information-driven awareness-
resource-epidemic model on top of multiplex networks is proposed
in this study, which incorporates the elements of preferential contact
and different types of information. We consider that the resources
are allocated from healthy (susceptible) individuals to their infected
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neighbors, and the allocation probability of each healthy individ-
ual is determined by its awareness that evolves dynamically with
the immediate epidemic state. Information on the global infection
density and the fraction of infected neighbors is considered in our
model, which determines the awareness of each individual. To inves-
tigate the influence of different types of information on the coupled
dynamics, two parameters that represent the relative weights of each
piece of information are introduced in our model. For the transmis-
sion process of the disease, we consider that, owing to the limited
energy and time of each individual, an infected individual contacts
preferentially with a susceptible neighbor and transmits the disease
to the selected neighbor with a certain probability. A parameter is
introduced in our model to tune the preference. The recovery rate
of each infected individual is determined by the number of resources
received from neighbors in the social layer.

To theoretically analyze the coupled dynamics of the pro-
posed model, we employ the Microscopic Markov Chain Approach
(MMCA).35 The infection density of the disease is predicted pre-
cisely, and an approximate epidemic threshold is derived using the
evolution equations. Combining numerical analysis and experimen-
tal simulations, we systematically study the coupled dynamics from
the following aspects: (1) We investigate the impact of information-
driven awareness (which can affect the willingness of healthy indi-
viduals to allocate resources) on the dynamic characteristics of the
coupled model, and find that the more active the resource support
between individuals, the more effectively the disease can be con-
trolled. (2) We further investigate the effects of preferential contact
on the dynamical characteristics of the coupled model and find that
there is a critical parameter at which the effectiveness of the disease
control is the worst. Overall, the disease can be better suppressed
when individuals with small degrees are preferentially protected.
(3) Next, we study the effects of the inter-layer degree correlation
and find that it has a “double-edged sword” effect on the coupled
dynamics. Specifically, when there is a relatively lower infection rate,
the more positive the inter-layer degree correlation, the better the
disease can be suppressed. On the contrary, when there is a relatively
larger infection rate, the more negative the inter-layer degree corre-
lation, the more effectively the disease can be suppressed. (4) Finally,
we study the relative weight of the two types of information, and find
that the greater the weight of global information, the better the dis-
ease can be suppressed, which indicates that global information is
of prime importance for disease control, and we need to increase
information transparency during pandemic to optimally control the
disease.

II. MODEL DESCRIPTIONS

In this section, an information-driven awareness-resource-
epidemic model is proposed based on a double-layer multiplex net-
work comprising social and physical contact layers. To distinguish
the differences between the two layers, the social and contact layers
are marked as A and B, respectively. We assume that resources are
distributed among individuals with friend relationship on the social
layer, which is consistent with most real social scenarios; namely,
people are more inclined to help their friends when emergencies
occur. It is assumed that the disease is transmitted from infected
individuals to susceptible individuals in the physical contact layer.

The nodes and edges in the network represent individuals and their
relationships.

A. Coupled dynamic model

In the contact layer of the network, a resource-based
susceptible-infected-susceptible model is adapted to describe the
spread of the epidemic. During each time interval [t, t + 1t], the
virus attempts to propagate from infected individuals to suscepti-
ble ones at a basic infection rate β . However, in real scenarios, an
individual can interact with a limited number of people in a short
period, and consequently, has to contact neighbors selectively.36 To
depict the preferential contact among nodes, a variable pij is intro-
duced, such that in a time interval (t, t + 1t), the probability of node
i contacting j is pij which can be written as

pij =
k

χ

j
∑

j∈�B
i

k
χ

j

, (1)

where, �B
i represents the neighbor set of node i in the contact layer,

kj is the degree of node j, and χ represents the contact prefer-
ence located at [−1.0, 1.0]. When χ < 0, individuals are more likely
to contact neighbors with small degrees. When χ > 0, individu-
als prefer to contact neighbors with large degrees. For χ = 0, each
individual randomly contacts a neighbor at a time. In addition, the
infected nodes recover to the susceptible state at each time step.
Because the recovery process of an infected node consumes a certain
amount of resources, nodes with more resources will have a higher
recovery probability. Consequently, the recovery rate of node i at
time t is assumed to satisfy:

µi(t) = 1 − (1 − µ0)
εωi(t)+1, (2)

where ε represents the resource conversion rate, which characterizes
the extent to which the resources can improve the recovery rate,21

ωi(t) is the resources quantity of node i at time t, and µ0 is the basic
recovery rate of all nodes.

In addition, it is assumed that resources, such as drugs, pro-
tective supplies, and funds, are provided by healthy individuals.32 In
a small time interval, each susceptible node generates one unit of
resource, and simultaneously allocates the resource to its infected
neighbors. We consider that susceptible nodes can perceive the risk
of contagion through information from both the mass media and
the neighborhood in the social layer. Generally, individuals obtain
information on the global number of infected individuals from mass
media, simultaneously, they can acquire information about infected
neighbors. These two types of information can have a distinct influ-
ence on the judgment of the risk of contagion for individuals. To
investigate the impact of global and local information on spread-
ing dynamics, we introduce the term awareness27,28,37 denoted as α,
to quantitatively characterize the perception of the contagion risk
of susceptible individuals. To characterize the influence of the two
types of information on the awareness of each individual, the global
and local infected densities ρ(t) and κ(t) are used to represent the
two types of information, which are calculated as follows:

ρ(t) =
1

N

N
∑

i=1

ρi(t), (3)
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and

κi(t) =
1

kA
i

∑

j∈�A
i

ρj(t), (4)

where ρi(t) is defined as the probability that node i is in the infected
state at time t, κi(t) is the fraction of infected neighbors of node i
in the social layer at time t, �A

i and kA
i represent the neighbor set

and the degree of node i in the social layer respectively. For simplic-
ity, we denote ρ ≡ ρ(t → ∞) as the infection density in the steady
state, and ρi ≡ ρi(t → ∞) as the infected probability of node i in
the steady state. In addition, variables ζ and η are introduced to
represent the relative weights of the global and local information
respectively. According to the above definitions, the time dependent
awareness of node i can be written as

αi(t) = 1 − (1 − α0)
ζρ(t)+ηκi(t), (5)

where the relationship between ζ and η satisfies ζ + η = 1, and
α0 represents the basic awareness of the individuals. At each time
step, the probability that a susceptible node allocates resources to
its infected neighbor depends on its current awareness. A higher
level of awareness implies lower willingness to allocate resources.
Consequently, it is assumed that the relationship between the alloca-
tion probability of node i , denoted as qi(t), and the awareness αi(t)
satisfies:

qi(t) = (1 − αi(t)). (6)

Furthermore, it is assumed that the resources of each healthy node
i are equally distributed to its infected neighbors with probability
qi(t). Consequently, the resource quantity of each infected node j
(j = 1, . . . , N) at time t can be written as:

ωj(t) =
∑

i∈�A
j

(1 − ρi(t))
qi(t)

∑

`∈�A
i/j

ρ`(t) + 1
, (7)

where �A
i/j is the neighbor set of node i except j in the social layer.

B. Theoretical analysis of the model

In this section, MMCA is adapted to theoretically analyze the
dynamic process of the model. According to the evolution rules
described in the previous sections, the time evolution of ρi(t) is:

ρi(t + 1t) = (1 − ρi(t)) (1 − πi(t)) + (1 − µi(t)1t) ρi(t), (8)

where µi(t)1t denotes the recovery probability of node i in the time
interval [t, t + 1t], and πi(t) is the probability that node i is not
infected at time t. The first term on the right-hand side represents
the probability that a susceptible node i is infected by one of its
infected neighbors, and the second term is the probability that node
i does not recover. The expression of πi(t) can be written as:

πi(t) =
∏

j∈�B
i

[1 − pjiβρj(t)1t]. (9)

In a small time interval, an individual has a limited opportunity
to contact all its neighbors. Consequently, the probability that an
infected node j contacts node i is pji. The probability that node i
is infected by node j in the time interval [t, t + 1t] is pjiβρj(t)1t.

For convenience of analysis and without loss of generality, the time
interval is set to 1t = 1, and Eqs. (8) and (9) can be rewritten as

ρi(t + 1) = (1 − ρi(t))(1 − πi(t)) + (1 − µi(t))ρi(t), (10)

At a steady state, we have:

ρi = (1 − ρi)(1 − πi) + (1 − µi)ρi, (11)

where πi and µi are the probabilities of node i not being infected
and the recovery rate of i in the steady state, respectively. By numer-
ically iterating Eq. (11) for i = 1, . . . , N, the infection probability of
all nodes at each time step and the infection density ρ in the steady
state can be obtained.

Because of the nonlinearities of the equations, we cannot obtain
a theoretical expression for the epidemic threshold, which is a crit-
ical value in analyzing the spread of the epidemic. To derive the
epidemic threshold βc, we can resort to the approximate method.
When β → βc, the infection probability of node i is ρi → 0 for
i = 1, . . . , N. Thus, theoretical analysis can be performed by lin-
earizing the equations in the vicinity of βc. By applying the condition
that ρi → 0 for i = 1, . . . , N in the vicinity of βc and incorporating
Eq. (6) into Eq. (7), the approximation of the resource quantity of
node i in the steady state ωi can be expressed as:

ωi =
∑

j∈�A
i

(1 − αj)

≈
∑

j∈�A
i

(

ζ

N
+

η

kA
j

)

α0, (12)

where αi denotes the awareness of node i in the steady state. In
addition, by linearizing Eqs. (2) and (11) and neglecting the high-
order terms of the equations at a small value of µ0, the following
expression can be obtained:

µi ≈ εωiµ0, (13)

and

ρi =
β

µi

N
∑

j=1

bijpjiρj ∀i = 1, . . . , N, (14)

where bij is an element of the adjacent matrix of the contact layer. By
rewriting Eq. (14), we obtain the following iterative equation:

ρi(t + 1) =
β

µ
[Mρ(t)]i ∀i = 1, . . . , N, (15)

where the element of the matrix M is Mij = bijpji and ρ(t) is a col-
umn vector of the infected probability for all nodes. After a limited
period, that is, 1t = T, the dynamic processes reach a stationary
state, which satisfies the equation ρi(t + 1) = ρi(t) for each time
step t. Consequently, the following iterative equation is obtained:

ρ(T) = βD−1 (µ(T − 1)) Mρ(T − 1)

= βT

[

T−1
∏

t=0

D−1(µ(t))M

]

ρ(0), (16)

where the entries of the diagonal matrix D (µ(t)) are Dii = µi(t) for
i = 1, 2 · · · N, and the matrix D−1 (µ(t)) is the inverse of D (µ(t)).

Chaos 32, 073123 (2022); doi: 10.1063/5.0092031 32, 073123-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Finally, the approximate expression of the epidemic threshold βc

can be derived based on the fact that when β < βc, the epidemic
gradually evolves to zero, that is, ρi(t > T) → 0. Consequently, the
following expression for βc is obtained:

βc =





1

3max

(

∏T−1
t=0 D−1(µ(t))M

)





1
T

. (17)

The infection density ρ and threshold βc are both influenced by
preferential contact, inter-layer degree correlation, and individual
awareness simultaneously.

III. NUMERICAL VERIFICATION AND SIMULATION

RESULTS

In the following sections, we conduct both numerical analysis
and extensive simulations to study the influence of information-
driven awareness, contact preference and the structure of the under-
lying networks on the coupled dynamics on two-layer multiplex
networks. In each simulation, a multiplex network of N nodes is
built, and there is a one-to-one correspondence between the nodes
in the two layers. Note that because simulations of the processes are
extremely time-consuming, it is not feasible to perform all exper-
iments on a network with a large number of nodes. In addition,
the node quantity of the network has no qualitative influence on
the relevant conclusions, as demonstrated in the Appendix section.
Therefore, without loss of generality, the value of N is fixed at
N = 5000 in this paper. The initial infection density is set to
ρ(0) = 0.1 for all the simulation realizations. Because most network
systems in the real world display the scale-free (SF) property,38–41 we
focus on SF-SF networks in numerical analysis and simulations.

In the simulations, the uncorrelated configuration model
(UCM)42 is applied to build both layers. The process of building the
network is as follows.

i: Two degree sequences are generated according to the degree
distributions P(k) ∼ k−γA and P(k) ∼ k−γB , where γA and γB

are the degree exponents of social and contact layers, respec-
tively. Because the influence of the degree distribution on the
coupled dynamics is not within the scope of this study and with-
out loss of generality, the degree exponents of the two layers
are fixed as γA = γB = 2.4 to avoid the influence of inconsistent
degree distribution on the conclusions. The maximum degrees

of the two layers are set to kA
max = kB

max =
√

N, which can avoid
intra-layer degree correlation when the network size N is suffi-
ciently large,42,43 and to ensure that there are no isolated nodes
in the generated network, the minimum degrees are restricted
to kA

min = kB
min = 3.

ii: Each node in the two layers is randomly assigned a degree value.
At each step, two nodes are randomly connected by an edge, and
multiple edges and self-loops are prohibited. Subsequently, the
degree values of the nodes at both ends of the edge decrease by
one.

iii: Repeat step (ii) in the two layers simultaneously until the degree
value of each node decreases to zero, and a multiplex network
without inter and intra layer degree correlations is obtained.

The synchronous updating method44 is adopted in the sim-
ulations. During a small time increment 1t, each infected node j
attempts to infect its susceptible neighbor i with probability pjiβ1t.
Simultaneously, the infected node recovers to the susceptible state
with probability µj(t)1t. Resource allocation occurs concurrently
in the social layer. The coupled dynamics terminate when the global
infected density fluctuates within a small range after a long time.
To determine the epidemic threshold, we leverage the susceptibility
measure 1χ

45 in the simulations, which is written as:

1χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉
, (18)

where 〈· · ·〉 is the ensemble average over all the realizations. The epi-
demic threshold βc can be identified when the value of 1χ exhibits
a diverging peak, which has been widely used in the identification of
critical points in different scenarios.45

A. Effects of awareness and contact preference on

the coupled dynamics

In this section, we investigate the influence of information-
driven awareness on coupled dynamics using numerical analysis
and extensive Monte Carlo simulations. To avoid the interference of
other factors, we fix the coefficient of the inter-layer degree correla-
tion πd as 0 and the weight of global information at ζ = 0.5. Figure 1
plots the infection density ρ as a function of the basic infection rate β

for different values of α when the contact preference χ is χ = −1.0
(a), 0 (b), and 1.0 (c). Initially, a fraction of ρ(0) = 0.1 nodes is ran-
domly selected to be in the infected state, and the remaining nodes
are in the susceptible state. The lines in the three subfigures repre-
sent the results obtained by the numerical iteration of Eq. (11) which
matches well with the simulation results marked by the symbols. We
can learn from Figs. 1(a) to 1(c) that, when χ is fixed, there is the
largest value of the epidemic threshold βc and the lowest value of
ρ when α = 0.2, and conversely, there is the smallest value of βc

and the largest value of ρ when α = 0.8. The results obtained from
the three subfigures indicate that, with the same contact preference,
the more active the resource support between individuals, the more
effectively the disease can be controlled.

To systematically study the impact of awareness on the coupled
dynamics, we plot the full phase diagrams of the resource-epidemic
coupled dynamics on the parameter plane (α − β) when the val-
ues of the contact preference are χ = −1.0, χ = 0 and χ = 1.0 in
Figs. 2(a)∼2(c) respectively. The colors in the subfigures encode the
infection density ρ in the stationary state. We can learn from the
phase diagrams that at each fixed value of contact preference, the
threshold βc decreases monotonously with an increase in α. Specif-
ically, when α approaches α = 1, the value of βc decreases sharply.
Moreover, we find that when the infected nodes contact preferen-
tially to neighbors with small degrees, for example, χ = −1.0, the
epidemic breaks out earlier and more sharply than when they prefer
to contact neighbors with large degrees. When χ = 1.0, as shown in
Fig. 2(c), the threshold βc increases significantly, and the increase of
ρ slows distinctly with an increase in β . Preferential contact between
the infected nodes and their neighbors has a significant influence on
the coupled dynamics.
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FIG. 1. Influence of the awareness on the coupled dynamics on double-layer networks without inter-layer degree correlation. The subfigures display the relationship between
the values of ρ and β for α = 0.2 (blue circles), α = 0.4 (red triangles), α = 0.6 (yellow squares) and α = 0.8 (purple rhombuses) when χ = −1.0 (a), χ = 0 (b) and
χ = 1.0 (c), respectively. The other parameters are set to πd = 0, ζ = 0.5, the basic recovery rate is µ0 = 0.1. Lines in the subfigures represent the analytical results
obtained from the MMCA. Data are obtained by averaging over 500 independent simulations.

To investigate the impact of preferential contact on the
coupled dynamics, we first study the infection density ρ in the sta-
tionary state as a function of β for five typical values of χ when
the basic awareness is fixed at α = 0.1, 0.5 and 0.9, as shown in
Figs. 3(a)∼3(c). The symbols in the figures represent the simula-
tion results, and the lines indicate the results obtained by MMCA.
It can be observed from the figures that the theoretical results are
in well agreement with the simulation results. In addition, it can
be observed that overall, the more the infected nodes are inclined
to contact neighbors with large degrees, the more the spread of the

disease can be suppressed. Specifically, it can be observed from the
figures that when χ increases from χ = −1.0 to χ = 1.0, the spread
size decreases and the threshold βc increases. In addition, we find
that, when χ ≤ 0, the spread size and threshold βc are both close
to each other for different levels of contact preference χ . However,
when χ > 0, the spread size decreases and the threshold βc increases
sharply with an increase in χ .

Furthermore, we systematically study the impact of prefer-
ential contact on the coupled dynamics by showing the epidemic
threshold βc as a function of χ when α = 0.1, 0.5 and 0.9 in

FIG. 2. The phase diagrams in the parameter plane (α − β) for χ = −1.0 (a), χ = 0.0 (b) and χ = 1.0 (c) respectively. Colors in the subfigures represent the value of
ρ obtained from Monte Carlo simulations. The white dotted lines indicate the theoretical predictions of epidemic threshold βc obtained from Eq. (17).
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FIG. 3. Influence of the preferential contact on the coupled dynamics. The infection density ρ as a function of β when χ = −1 (blue circles),−0.5 (red triangles), 0 (yellow
squares), 0.5 (purple rhombuses) and 1 (green snowflakes) under the conditions that α = 0.1 (a), α = 0.5 (b) and α = 0.9 (c). The other parameters are set to πd = 0,
ζ = 0.5, µ0 = 0.1. Lines in the subfigures represent the analytical results obtained from the MMCA. Data are obtained by averaging over 500 independent Monte Carlo
simulations.

Fig. 4. We can obtain the following conclusions from the figure.
First, there is a critical value of χ denoted as χ∗; the epidemic
threshold βc decreases with χ when χ < χ∗, and conversely, it
increases with χ when χ > χ∗. At point χ∗, the threshold βc

is the lowest and the spread size ρ is the largest. Second, at
each fixed value of χ , the threshold decreases with increasing
α, which is consistent with the results obtained in the previous
section. Third, when χ > 0 the disease can be better controlled than
when χ < 0.

B. Effects of inter-layer degree correlations on the

coupled dynamics

In this section,we investigate the impact of inter-layer-degree
correlations on the coupled dynamics. To build a double-layer
multiplex network with inter-layer degree correlation πd, we follow
the following steps:

i: Two degree sequences are generated according to the degree dis-
tributions P(k) ∼ k−γA and P(k) ∼ k−γB , where γA = γB = 2.4.
The maximum and minimum degrees of the two layers are

restricted to kA
max = kB

max =
√

N and kA
min = kB

min = 3.
ii: Rematching both degree sequences in ascending order (maxi-

mum positive correlation) or rematching the degree sequence
in the social layer in ascending order and the degree sequence
in the contact layer in descending order (maximum negative
correlation).

iii: Rematching any one of the sequences with probability 1 − πd.
iv: Assigning the degrees to each node according to the order or the

degree sequences. Each pair of nodes is connected according to
steps ii and iii in Sec. III A.

According to the above steps, we can obtained a double-layer
multiplex network with a degree correlation πd. In Figs. 5(a)∼5(c),
we show the infection density ρ as a function of β for different

inter-layer degree correlations when the awareness is α = 0.1 (a),
α = 0.5 (b), and α = 0.9 (c), respectively. In each subfigure, five
typical values of πd are chosen. From the figures, we find that for
each fixed value of α, there is a critical point that is denoted as
β∗. When β < β∗, the infection density ρ decreases monotonically
with πd, and the threshold βc increases with πd. This indicates that
a positive inter-layer correlation is more conducive to delaying the
epidemic outbreak. By contrast, when β > β∗, the infection density

FIG. 4. The epidemic threshold βc as a function of χ for α = 0.1 (red squares),
α = 0.5 (green circles) and α = 0.9 (blue triangles). The red rhombuses
represent the critical value χ∗, at which βc reaches to the lowest value. The other
parameters are set to πd = 0, ζ = 0.5, µ0 = 0.1 respectively.
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FIG. 5. Impacts of inter-layer degree correlation on the coupled dynamics. The infection density ρ at the steady state as a function of β when πd = −1 (blue circles),−0.5
(red triangles), 0 (yellow squares), 0.5 (purple rhombuses) and 1 (green snowflakes) under the conditions that α = 0.1 (a), α = 0.5 (b) and α = 0.9 (c). The inset in each
subfigure is the the partial enlarged details of the curves after the cross point. The other parameters are set to χ = 0, ζ = 0.5, µ0 = 0.1. Data are obtained by averaging
over 500 independent Monte Carlo simulations.

ρ increases with πd. This result suggests that when there is a rela-
tively high infection rate, a negative inter-layer correlation will be
more conducive to the suppression of disease transmission.

We can qualitatively explain the phenomena above as fol-
lows. Previous studies have demonstrated that the propagation pro-
cess of the epidemic exhibits hierarchical features in networks.46

Namely, in the initial stage of propagation, the disease is located
on a small finite number of nodes in the contact layer, where
the hub nodes with large degrees are the centers of localization,47

and then, slowly propagates to other nodes through edges linked

to these hub nodes when there is a relatively smaller infection
rate, that is, β < β∗. Consequently, when there is a positive inter-
layer degree correlation, an infected hub node has a high prob-
ability of obtaining adequate resources from its neighbors in the
social layer, which ensures a high recovery rate for the infected
nodes. A large recovery rate of the entire system can then lower
the effective infection rate of the disease, which can be defined as
βe = β/〈µ〉, where 〈µ〉 is the average recovery rate of all nodes21,48.
Conversely, when there is a relatively larger infection rate, that
is, β > β∗, the disease propagates rapidly to a large proportion

FIG. 6. The phase diagrams in the parameter plane (πd − β) for α = 0.1 (a), α = 0.5 (b) and α = 0.9 (c). Colors in the figures represent the value of ρ obtained from
Monte Carlo simulations. The white dotted lines indicate the theoretical predictions of epidemic threshold βc obtained from MMCA.
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FIG. 7. Influence of global and local information on the coupled dynamics. (a) Infected density ρ as a function of β for ζ = 0 (blue circles), 0.5 (red triangles), 0.7 (yellow
squares) and 1.0 (purple rhombuses) when contact preference is χ = −1.0. Subfigures (b) and (c) are the cases when χ = 0 and χ = 1.0 respectively. The other
parameters are set to πd = 0 and α = 0.5, µ0 = 0.1. Data are obtained by averaging over 500 independent Monte Carlo simulations.

of the network. Under this condition, a more negative inter-layer
correlation indicates that the nodes with small degrees in the con-
tact layer will have a larger probability of having a counterpart
with large degrees in the social layer, and then, a higher prob-
ability of obtaining more resources and a higher recovery rate
for most of the nodes in the contact layer. Scale-free networks
comprise a large proportion of nodes with small degrees and a
small proportion of nodes with large degrees. Consequently, when
β > β∗, a more negative inter-layer degree correlation is beneficial
for suppressing the spread of the epidemic.

Further, we study systematacially the influence of the inter-
layer degree correlation on the results by presenting the full phase
diagrams in parameter (πd − β) for α = 0.1 (a), α = 0.5 (b), and
α = 0.9 (c) in Fig. 6 respectively. Colors in the subfigures encode the
infection density ρ, and the white lines indicates the threshold βc as
a function of πd that is obtained from MMCA. We find that, overall,
the epidemic threshold βc increases monotonously with the increase
of πd when the value of πd changes from −1.0 to 1.0. In addition, we
can also find that the difference of βc for different inter-layer degree
correlation is smaller at a larger awareness, i.e., α = 0.9, than that of
a smaller awareness, i.e., α = 0.1.

C. Effects of global and local information on the

coupled dynamics

Finally, we focus on the impact of global and local infor-
mation on coupled dynamics. Individuals can perceive the risk
of contagion through information disseminated from mass media,
such as social platforms, TV news, and newspapers, and the infec-
tion of their friends,49 which can then change the awareness of
people.50 Subsequently, they react heterogeneously to the informa-
tion, such as maintaining social distancing and stockpiling supplies.4

In turn, the change in awareness and behaviors of people will
affect the coupled dynamics of resource allocation and disease
spread.

To study influence of the global and local information on the
coupled dynamics, we exhibit the infection rate ρ as a function of
β for four typical weights of global information in Fig. 7, namely,
ζ = 0 (blue circles), ζ = 0.5 (red triangles), ζ = 0.7 (yellow squares)
and ζ = 1.0 (purple rhombuses), the results for the other values
of ζ are exhibited in the Appendix section. The relative weight of
local information can be obtained by η = 1 − ζ . We find that when
the infected nodes contact randomly, i.e., χ = 0, or preferentially
to the neighbors with small degrees χ = −1.0, the relative weights
of the global and local information do not affect the infection den-
sity ρ and epidemic threshold βc. In contrast, when nodes with large
degrees are contacted preferentially, the epidemic threshold βc does
not change, whereas the value of ρ decreases with an increase in the
relative weight of global information ζ .

IV. CONCLUSIONS AND DISCUSSIONS

In this study, we examined the interaction among information-
driven awareness, resource allocation, and epidemic spreading on
top of multiplex networks from more realistic perspectives. A mul-
tiple coupled model that incorporates the factors of the preferred
contact among individuals, different types of information and the
inter-layer degree correlation, has been proposed. We have con-
sidered that in the real scenario, awareness, resource allocation
and epidemic spreading interact with each other through the fol-
lowing mechanism: the rapid spread of the disease stimulates the
diffusion of information about the disease, and susceptible indi-
viduals perceive the risk of contagion from both global and local
information, which alters the behavior of the individuals. Suscep-
tible individuals can provide resources to assist the recovery of
infected neighbors, which is affected by their information-driven
awareness. Subsequently, the recovery rate of the infected indi-
viduals is dependent on the resources received from susceptible
neighbors, which in turn influences the spreading dynamics of the
epidemic. To distinguish between the two types of information,
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the parameters ζ and η were introduced in the model to represent
the relative weights of global and local information respectively. In
addition, we introduced the parameter χ to tune the contact pref-
erences, such that, when χ < 0, the infected nodes in the contact
layer are more likely to contact susceptible neighbors with small
degrees; otherwise, they are more likely to contact those with large
degrees.

To analyze the coupled dynamics theoretically, we employed
the MMCA theory. The infection density was precisely predicted
using MMCA. Moreover, we obtained an approximate epidemic
threshold using this theory. By using both theoretical analysis and
Monte Carlo simulations on multiplex networks, we conducted our
research from the following four aspects: (1) We studied the impact
of awareness on the coupled dynamics and found that with the
increase in α, the infection density in the stationary state increases
and the epidemic threshold βc decreases monotonously. The results
suggest that during a pandemic, the more active the resource sup-
port between individuals, the more effectively the disease can be
controlled. (2) Further, we investigated the impact of preferen-
tial contact on the coupled dynamics, and found that when the
parameter χ increases from −1.0 to 1.0, the threshold βc first
decreases until it reaches a critical value χ∗, and then increases
with χ . At χ = χ∗, the value of βc is the lowest and the infec-
tion density ρ is the highest. Moreover, there is a maximum value
of βc at χ = 1.0, which indicates that it is more conducive to
suppressing the disease when the nodes with small degrees are bet-
ter protected. (3) Next, we studied the impact of the inter-layer
degree correlation on the results, and found that the inter-layer
degree correlation has a “double-edged sword” effect on the spread-
ing dynamics. Specifically, there is a critical value β∗. When β

< β∗, the outbreak of the disease can be delayed with an increase
in the value of πd. On the contrary, when β > β∗, the infection
density ρ increases with πd. (4) Finally, we studied the impact
of different types of information on the coupled dynamics, and
found that when the infected nodes preferentially contact the neigh-
bors with small degrees, the information type has little impact
on the results, while, when they contact preferentially the neigh-
bors with large degrees, the infection density ρ decreases with an
increase in the relative weight of global information ζ , which sug-
gests that global information is more effective in suppressing the
disease.

Our findings make a strong contribution to the understand-
ing of the mechanisms by which information-driven awareness, the
behavior of resource allocation, and the spread of the epidemic
interact in more real scenarios. The results of this study are of
practical significance for controlling outbreaks of infectious dis-
eases. It will also guide us to behave reasonably when perceiving the
threat of disease. Based on the conclusions of this study, we pro-
pose possible suggestions for epidemic control. First, in the early
stages of an epidemic, people should maintain rational attitudes and
behaviors to avoid “panic buying” and hoarding resources.51 They
should be encouraged to support and help each other by donating
resources more actively to suppress or mitigate the spread of an epi-
demic. Second, during a pandemic, governments should increase
information transparency of the disease by increasing the dissemi-
nation of information about the state of the epidemic through public
channels.
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APPENDIX

In this section, we first show the results of the supplementary
experiments for the influence of global and local information on
coupled dynamics. Different from Fig. 7, we choose two relatively
small values of the weight of global information ζ in Fig. 8, namely
ζ = 0.1 (blue circles), ζ = 0.3 (red triangles). For comparison, the
results of ζ = 0.5 (green squares) are also exhibited in the three sub-
figures. We find that when ζ = 0.1 and ζ = 0.3, the conclusions are
exactly the same as those in Fig. 7.

To explore the impact of network size on the results and con-
firm that it does not qualitatively affect the results, we conduct
supplementary simulations on networks with size N = 106. Note
that when the network size is relatively large, i.e., N = 106, the cor-
responding calculations are extremely time-consuming; therefore,
it is not feasible to reproduce all the experiments on these net-
works. Consequently, we exhibit two typical results, as shown in
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FIG. 8. Supplementary figures of the experiments for the influence of global and local information on the coupled dynamics. The values of the relative weight of global
information are set to ζ = 0.1, ζ = 0.3 and ζ = 0.5 for χ = −1.0 (a), χ = 0 (b) and χ = 1.0 (c) respectively. The other parameters are exactly the same as those in
Fig. 7.

Figs. 9 and 10. In Fig. 9, we show the results of the infection den-
sity ρ in the steady state as a function of β for four values of α when
χ = 0, which corresponds to the results in Fig. 1(b). In Fig. 10, we
show the results for ρ as a function of β for five values of χ when
α = 0.5, which corresponds to the results in Fig. 3(b). Note that the
other parameters of the two figures are the same as those of the

FIG. 9. Illustration of the simulation results on network with node size N = 106

corresponding to Fig. 1(b)

corresponding figures. It can be observed in Figs. 9 and 10 that, the
corresponding conclusions remain unchanged. There is only a small
range of changes in the absolute values of the epidemic threshold
βc and the infection density ρ. Consequently, without affecting the
conclusions, a relatively small network size, N = 5000 was selected
in the main text to reduce the calculation time.

FIG. 10. Illustration of the simulation results on network with node size N = 106

corresponding to Fig. 3(b)
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