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Abstract—Benefitting from the breakthrough of wireless power
transfer technology, the lifetime of Wireless Sensor Networks
(WSNs) can be significantly prolonged by scheduling a mobile
charger (MC) to charge sensors. Compared with omnidirectional
charging, the MC equipped with directional antenna can con-
centrate energy in the intended direction, making charging more
efficient. However, all prior arts ignore the considerable energy
leakage behind the directional antenna (i.e., back lobe), resulting
in energy wasted in vain. To address this issue, we study a
fundamental problem of how to utilize the neglected back lobe
and schedule the directional MC efficiently. Towards this end, we
first build and verify a directional charging model considering
both main and back lobes. Then, we focus on jointly optimizing
the number of dead sensors and energy usage effectiveness. We
achieve these by introducing a scheduling scheme that utilizes
both main and back lobes to charge multiple sensors simul-
taneously. Finally, extensive simulations and field experiments
demonstrate that our scheme reduces the number of dead sensors
by 49.5% and increases the energy usage effectiveness by 10.2%
on average as compared with existing algorithms.

Index Terms—Wireless power transfer, directional charging,
back lobe, wireless rechargeable sensor networks

I. INTRODUCTION

Energy limitation is widely recognized as a key hurdle that
stunts the adoption of Wireless Sensor Networks (WSNs) [1],
[2]. Recently, the breakthrough of wireless power transfer [3]
technology gave birth to the concept of Wireless Rechargeable
Sensor Networks (WRSNs) [4]–[6] and made it received
widespread attention. In WRSNs, a mobile charger (MC) is
usually employed to visit and recharge energy-critical sensors,
such that the operational lifetimes of sensors can be signif-
icantly prolonged. Although WRSNs have many potentials
in various application scenarios (e.g., environmental monitor-
ing [7], healthcare [8], and military [9]), there still exists a
gap between energy supply and practical demand.

A key reason for this gap is that the energy radiated by MC
is not fully utilized. Traditional wireless charging arts [10]–
[17] usually employ omnidirectional antennas, which broad-
cast electromagnetic waves equally in all directions regardless
of the location of the sensors, in this case, merely a small
part of the energy could be transferred to the sensors. Instead,
directional antennas concentrate the energy in the intended
narrow direction via energy beamforming [18]–[26], and thus
enhance the energy transferred to the sensors. Nevertheless, the
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Fig. 1. Radiation patterns of three
typical directional antennas produced
by Powercast, Alien, and Taoglas.

Fig. 2. A charging energy heatmap
of TX91501 wireless charger pro-
duced by Powercast.

energy radiated by MC is still underutilized, as an unignorable
part of the energy is “leaking” in unintended directions for
almost all directional antennas [27].

Fig. 1 depicts the radiation patterns of three typical com-
mercial off-the-shelf directional antennas [28]–[30]. It shows
that in front of each directional antenna, there is an energy
beam with maximum energy intensity, aka the main lobe [27].
Besides, in other directions of each antenna, there are some
smaller energy beams, also called the side lobes, among which
the extremely important one directly behind the main lobe
is the back lobe [27]. To further demonstrate the energy
radiation pattern of directional antenna in different directions,
we take Powercast TX91501 [28] as an example and plot
its energy distribution in Fig. 2. It can be observed that the
farthest charging distance of the back lobe is up to 50%
of that of the main lobe. Moreover, the energy intensity of
the back lobe is about 20% of that of the main lobe at the
same transmission distance. Even though much effort has been
devoted to concentrate all the radiated energy on the main
lobe [31]–[33], energy leakage is inevitable. As a result, a
considerable amount of energy leaking behind the directional
antenna is wasted in vain.

Although there are some arts focusing on the directional
charging scheduling [19]–[21], none of them pay attention to
the back lobe. All these studies design charging scheduling
schemes according to the charging range and energy intensity
of the main lobe. Therefore, these schemes do not effectively
utilize the leaked energy behind the MC. Assuming that both
the main and back lobes are utilized, in this case, a larger
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charging range of the MC means that more sensors have a
greater chance to be charged simultaneously, thereby reducing
the number of dead sensors. Meanwhile, more radiated energy
from the MC can be received by sensors, thus improving the
energy usage effectiveness (EUE). In summary, it is necessary
to model the charging range and energy intensity of both
the main and back lobes, and accordingly design a charging
scheduling algorithm.

In this paper, we focus on making full use of the energy
of the main and back lobes to improve charging performance.
In particular, we study the problem of directional charging
scheduling with main and BACK lobes (BACK), i.e., how to
use a directional MC to travel and stop at several candidate
locations with proper orientations to charge sensors so that the
number of dead sensors is minimized and EUE is maximized.
Generally, we are faced with two major challenges.

The first challenge is how to build a charging model with
both main and back lobes that accurately describes the char-
acteristics of the directional MCs. Unlike the main lobe, the
manufacturers do not provide the parameters of the back lobe
because it is regarded as useless, or even troublesome, which
raises challenges in modeling energy transfer. In addition, for
different antennas, the radiation pattern of the back lobe varies,
the established model should be general and accurate enough
for most commercial off-the-shelf directional antennas.

The second challenge is how to design an effective schedul-
ing algorithm for BACK. With respect to energy constraints,
scheduling the charging path of MC is similar to solving an
NP-hard traveling salesman problem (TSP). Moreover, the MC
can freely adjust its orientation in [0, 2π), which means the
number of candidate orientations for MC to choose is infinite.
Note that, since the energy intensity and charging range of the
back lobe are different from those of the main lobe, it is more
difficult to determine not only when and where to sojourn for
an MC, but its orientation.

To summarize, our contributions in this paper are as follows:

• To the best of our knowledge, this is the first work to
utilize both the main and back lobes to wireless charge
sensors. We build a charging model with main and back
lobes, which can accurately model the energy radiated by
MC. In addition, this model can be reduced to a keyhole
model suitable for most directional antennas.

• To solve the BACK problem, we propose a charg-
ing scheme. We show that our scheme approximates
the optimal number of dead sensors with a ratio of
max{ β2

(Dm+β)2 ,
1√

2(
√
N+1)

} and the optimal EUE with a
ratio of

√
Nl, where Dm and β are constants determined

by the environment and the hardware parameters of
chargers, N and Nl are the number of sensors and sojourn
locations in the scheme, respectively.

• To evaluate our scheme, we conduct simulations and field
experiments to demonstrate that on average, our scheme
reduces the number of dead sensors by 49.5% and in-
creases EUE by 10.2% compared to existing algorithms.

Main LobeBack Lobe is

jl
o

ls

m
b

jl

ks



Fig. 3. Directional charging model with main and back lobes.

II. MODELING

A. Network Model

Consider a 2D plane network (with side length Ln) with a
base station (BS), N stationary sensors S = {s1, s2, ..., sN},
M candidate sojourn locations L = {l1, l2, ..., lM}, and a
directional MC with battery capacity B. Each sensor si is
powered by a rechargeable battery with capacity b. Let rei
and eci denote the residual energy and energy consumption
rate of si, respectively, so its residual lifetime is rei/eci.

As the network operates, sensors consume their battery
energy. When the residual lifetime of a sensor is lower
than a given threshold θl, it will send a charging request
REQi = (t, si, rei, eci) to BS, where REQi contains the time
point t, the sensor ID si, its residual energy rei, and its energy
consumption rate eci.

According to the received charging requests, a charging path
is constructed by BS. In one charging cycle, MC departs from
BS with full energy, then it moves along the charging path
to visit some selected sojourn locations in some order and
charges sensors wirelessly. We define the strategy of the MC
as a tuple ⟨lj ,−→olj ⟩ that denotes the sojourn location lj and
orientation −→olj of the MC. Only the sensors located in the
main or back lobe can receive non-negligible energy. Before
MC exhausts its energy, it returns to BS and gets recharged
for the next charging cycle.

B. Charging Model

We build our directional charging model based on empir-
ical studies and field experiments. The testbed consists of a
commodity off-the-shelf wireless charger TX91501 produced
by Powercast [28], and a rechargeable sensor equipped with
an omnidirectional antenna. We place the sensor around the
charger from near to far and record the received energy. The
experimental results are depicted in Fig. 2, which reveals two
insights: (1) the farthest charging distance behind the charger
is half of that in front of the charger (i.e., 1.3m and 2.6m); (2)
the beamwidth of the back lobe is different from that of the
main lobe (i.e., 2π/3 and π/3).

Therefore, we propose the directional charging model with
main and back lobes as shown in Fig. 3, which generalizes
the traditional directional charging model [21], [22]. For
simplicity, we build a double-sector model to approximate
the radiation pattern of realistic antennas. Hence, the charging
range of the main and back lobes are each modeled as a sector.
We apply the farthest charging distance as the radius, and the
beamwidth as the angle of the sectors. Consequently, it can
be seen in Fig. 3, when the orientation of charger is −→olj , si
and sk with in charging range can be replenished, while the
energy received by sl is negligible.
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In practice, since the back lobe is the energy beam of the
antenna, the Friis’s free space equation is also feasible in
it. Therefore, by incorporating the widely accepted empirical
charging model proposed in [10], [11], [22], the charging
power transmitted from the charger to a sensor si can be given
by:

PR(d) =
GtGrη

Lp
(

λ

4π(d+ β)
)2PT, (1)

where d is the distance between the charger and si, η is the
rectifier efficiency, Lp is the polarization loss, λ is the average
wavelength, β is a parameter to adjust the Friis’s free space
equation for the short distance transmission, and PT refers to
the transmission power of the charger. Moreover, Gt and Gr

represent the transmit gain and the receive gain, respectively.
Since sensors are equipped with an omnidirectional antenna,

the receive gain Gr is an angle-independent constant. In
contrast, the transmit gain Gt is a function of angle, which
is defined as the ratio of the radiation intensity in a given
direction to the radiation intensity produced by the omnidi-
rectional antenna at the same power, so Gt can be expressed
in a spherical coordinate system as:

Gt(θ, ϕ) = η
U(θ, ϕ)

Uo
, (2)

where η is set to be 1 since antennas are often assumed
to be lossless [34]. θ is the elevation angle from the z-axis
within [0, π], ϕ is the azimuth angle from the x-axis within
[0, 2π]. U(θ, ϕ) and Uo are respectively the radiation intensity
of directional and omnidirectional antennas at the same power,
that is, the power per unit solid angle.

For the omnidirectional antenna, it radiates power equally
in all directions, so we can obtain the total transmission power
of the antenna, PT, by integrating Uo over the steradian Ω:

PT =

‹
Ω

UodΩ = Uo

‹
Ω

dΩ = 4πUo. (3)

For the directional antenna, we place it in the center of the
spherical coordinate system. Let θ0 denote the elevation angle
of the direction for power concentration, in other words, the
main lobe will be targeted in the direction of the elevation
angle θ0. Since PT is the sum of the power of all unit
solid angles in the spherical coordinate system, it can also be
expressed as the integral over the entire area of the U(θ, ϕ):

PT =

‹
Ω

U(θ, ϕ)dΩ =

ˆ 2π

0

ˆ π

0

U(θ, ϕ)sinθdθdϕ. (4)

By combining Eq. (2) and Eq. (4), the expression of PT
with respect to the transmit gain Gt is obtained:

PT =

ˆ 2π

0

ˆ π

0

Gt(θ, ϕ)Uosinθdθdϕ. (5)

Considering that the radiation intensity of the back lobe
is different from that of the main lobe, we use a piecewise
constant function to describe the transmit gain function Gt(α):

Gt(α) =


Gm, − θm

2 ≤ α ≤ θm
2 ,

Gb, π − θb
2 ≤ α ≤ π + θb

2 ,

0, otherwise,

(6)
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Fig. 4. Comparing experimental data (black dots) and fitted data (mesh). Fitted
results are based on µ = 0.31, β = 0.053, Gm = 8, and Gb = 1.856.

where α is the relative angle between the charger and the
sensor. When α is within beamwidth θm of the main lobe, the
value of Gt(α) is equal to the main lobe gain Gm. Similarly,
when α is within beamwidth θb of the back lobe, its value
is equal to the back lobe gain Gb. As shown in Fig. 2, the
transmission power of the charger consists of two parts: the
main lobe part denoted by PTm and the back lobe part denoted
by PTb. In the same way, they can be expressed as:

PTm =

ˆ 2π

0

ˆ θm
2

0

GmUosinθdθdϕ. (7)

PTb =

ˆ 2π

0

ˆ π

π− θb
2

GbUosinθdθdϕ. (8)

Although the type of radiation is different, the transmission
power is the same, so we have:

4πUo=

ˆ 2π

0

ˆ θm
2

0

GmUosinθdθdϕ+

ˆ 2π

0

ˆ π

π− θb
2

GbUosinθdθdϕ. (9)

The Gb can be obtained directly from the above equation:

Gb =
2−Gm(1− cos( θm2 ))

1 + cos θb
2

, (10)

in particular, when θb = 2π − θm, the double-sector model
becomes the keyhole model that approximates all energy
beams except the main lobe as a sector, which is suitable for
most commercial directional antennas [35], [36]. Actually, for
off-the-shelf chargers, manufacturers only provide the value of
the main lobe gain Gm, not the back lobe gain Gb, because
it is regarded as useless. But we can calculate it by Eq. (10).

In conclusion, the charging power transmitted from the MC
to a sensor si is updated as:

PR(d, α)=


Gmµ

(d+β)2 , 0≤d≤Dm,−θm
2 ≤α≤ θm

2 ,
Gbµ

(d+β)2 , 0≤d≤Db,π− θb
2 ≤α ≤π+ θb

2 ,

0 otherwise,

(11)

where d and α refer to the distance and relative angle between
MC and si, respectively. To simplify the expression, we set
µ = Grη

Lp
( λ
4π )

2PT to represent some parameters. µ, Gm, and β
are constants determined by the environment and the hardware
parameters of chargers, Gb can be calculated by Eq. (10).

To further validate our charging model, we adopt Eq. (11) to
fit the field experimental data in Fig. 2. The fitting results are
shown in Fig. 4. It can be seen that the field experimental data
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are consistent with the fitting data of Eq. (11), which proves
that the directional charging model with main and back lobes
is feasible in our experimental environment.

C. Problem Formulation

In a WSN, the deployed sensors perform various important
tasks, such as sensing, collecting, and processing information.
Once the sensor energy is exhausted, the WSN can no longer
cover all monitoring areas and maintain its connectivity, poten-
tially leading to the breakdown of the network. Therefore, our
primary objective is to minimize the number of dead sensors.

Meanwhile, the battery capacity of the employed MC in
a WRSN is limited. To make the energy-limited MC serve
more sensors, the battery capacity of MC should be fully
utilized to ensure that as much energy as possible replenishes
to sensors. So our secondary objective is to maximize energy
usage effectiveness (EUE), which is defined as follows:

EUE =
Epl

Epl + Etr + Elo , (12)

where Epl is the energy eventually obtained by sensors, Etr is
the energy consumed to travel among sojourn locations, and
Elo is the energy loss during charging.

In this work, we study the problem of directional charging
scheduling with main and BACK lobes (BACK): how to
carefully choose appropriate sojourn locations and orientations
for directional MC with limited energy to make full use of the
energy radiated by its main and back lobes, so as to jointly
optimize the number of dead sensors and EUE.

However, there exists a tradeoff between these two objec-
tives [11] for the following reasons: to reduce the number of
dead sensors, the MC needs to simultaneously charge sensors
as much as possible to meet their charging requests. But this
may lead to long-distance charging, resulting in a lower EUE.
On the other hand, improving the EUE requires the MC to
approach each sensor in close proximity to charge them at a
very short distance. Obviously, that in turn makes it difficult
to ensure that there are sufficient sensors in the MC’s charging
range, increasing the number of dead sensors. Therefore, we
first minimize the number of dead sensors, based on which we
further maximize the EUE.

Problem 1. The primary objective is to find a directional
charging scheme that utilizes both the main lobe and back lobe
to minimize the number of dead sensors in one charging cycle,
under the constraint of limited battery capacity and charging
range of the MC, i.e.,

minimize Nds, (13)

subject to

Epl + Etr + Elo ≤ B, (14)

0≤d≤Dm,−θm
2

≤α≤ θm
2
,

or 0≤d≤Db, π−
θb
2
≤α ≤π+

θb
2
.

(15)

Problem 2. The secondary objective is to find a directional
charging scheme that maximizes energy usage effectiveness
under the constraint of the minimum number of dead sensors,
i.e.,

maximize EUE, (16)
subject to

Nds = N∗
ds, (17)

where N∗
ds is the minimum number of dead sensors.

III. SOLUTION

In this section, to tackle the BACK problem, we propose a
scheme composed of four algorithms, among which Alg. 1, 2,
and 3 together achieve the objective of minimizing the number
of dead sensors, on the basis of the minimized number of dead
sensors, Alg. 4 further maximizes the EUE.

A. Initial Path Planning Algorithm

First, we propose an initial path planning algorithm for
providing a feasible charging scheduling. In order to achieve
our primary objective of minimizing the number of dead
sensors, we should schedule the MC to preferentially charge
the sensor with urgent charging requests. Accordingly, the
basic idea of Alg. 1 is to greedily select the energy-critical
sensor with the shortest residual lifetime for charging service
in each iteration. When a sensor cannot be charged before its
deadline, we will try to charge it by changing the charging
order. If it fails, we will adjust the MC’s orientation or
replace the sojourn location in the charging path to incidentally
replenish energy to the dropped sensor while serving other
sensors. The detailed process is demonstrated in Alg. 1.

Algorithm 1: Initial Path Planning algorithm
Input: A to-be-charged queue Qt and a set of

pre-determined sojourn locations L
Output: An initial charging path P ′ and the set of dead

sensors Nd(s)
1 Sort all charging requests in Qt in increasing order of their

deadlines;
2 for each sensor si in Qt do
3 Select the nearest sojourn location li to sensor si;
4 Orientation −→oli is facing si (i.e., −→oli =

−→
lisi);

5 if tarr
li
≤ TD(si) then

6 Add ⟨li,−→oli⟩ to the tail of P ′, continue;

7 Try to insert ⟨li,−→oli⟩ into P ′ as the f th strategy
(1 ≤ f ≤ |P ′|);

8 if the insert fails then
9 Call Algorithm 2 to rescue si;

10 if tarrli
> TD(si) then

11 Call Algorithm 3 to optimize P ′;
12 if tarr

li
> TD(si) then

13 Nd(s)← Nd(s) ∪ {si};

14 Return the initial charging path P ′;
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Alg. 1 proceeds as follows. At first, we sort the Nr

charging requests in the to-be-charged queue Qt in increasing
order of their deadlines. Shorter deadline indicates higher
charging priority. That is, suppose the sorted sequence is
REQ1,REQ2, ...,REQNr

, it means TD1 ≤ TD2 ≤ ... ≤ TDNr .
Denote si by the sensor which sends charging request REQi.
When trying to add si to the charging path, we preferentially
select the nearest candidate sojourn location to si, and by
default, the MC is facing si. Here, we also let li and −→oli
denote by the corresponding sojourn location and the MC’s
orientation respectively when the MC serves si, which together
constitute the strategy ⟨li,−→oli⟩. We then gradually construct an
initial charging path P ′ = (⟨l1,−→ol1⟩, ⟨l2,−→ol2⟩, ..., ⟨lNr ,

−→olNr
⟩) by

adding ⟨li,−→oli⟩ to a partial charging path. Meanwhile, since
all sensors within the charging range will be charged at the
same time, we update the deadlines of all sensors covered by
li, including si, after ⟨li,−→oli⟩ has been added into the charging
path. Then, the charging requests in Qt will be updated too.

For any sensor si, if the deadline TDi is less than the time
tarrli

when the MC arrives at its sojourn location li, it means
that si cannot be charged in time. We call such sensor si as
“dropped sensor” and it needs re-arranging a former position.
Hence, we scan each former strategy to find a proper place to
insert ⟨li,−→oli⟩. For a former strategy ⟨lf ,−→olf ⟩(1 ≤ f < i), if
inserting ⟨li,−→oli⟩ to the front of it will not cause other sensors
dead, we insert ⟨li,−→oli⟩ in the front of ⟨lf ,−→olf ⟩. Otherwise,
we cannot rescue the dropped sensor si by only changing the
charging order. In this case, Alg. 2 and 3 will be called in
turn to optimize the current P ′. Once the dropped sensor si
cannot be rescued by calling both Alg. 2 and 3, si will be
eventually added into the set of dead sensors Nd(s). Then,
Alg. 1 continues to construct the charging path until all to-be-
charged sensors are tried to join the path P ′.

B. Dropped Sensor Rescue Algorithm

As demonstrated in line 9 of Alg. 1, we use Alg. 2 to rescue
the dropped sensor si for further minimizing the number of
dead sensors. The basic idea is to use the energy radiated from
the back lobe of the MC to incidentally charge si while the
MC serves other sensors, so as to prolong the residual lifetime
of si. Since the MC can arbitrarily adjust its orientation at each
sojourn location, we first try to change the orientation in the
initial charging path so that si can be incidentally charged.
Fig. 5 shows an example of rescuing the dropped sensor by
rotating the MC. It can be seen that when the MC charges
sj with the default orientation, there is a dropped sensor si
located outside the charging area of the MC. If we rotate the
MC clockwise from −→olj to

−→
o′lj , si will be replenished energy

from the back lobe of the MC while the MC charges sj .
If si cannot be rescued by adjusting the orientation, another

feasible method is to select a sensor sj in the initial path and
try to replace its corresponding sojourn location with one that
can simultaneously cover both si and sj . As shown in Fig. 6,
when the MC serves sj , its default sojourn location is lj , which
is the nearest to sj . Because ∠sj , lj , si ∈ (θm, π− θm+θb

2 ), si
and sj cannot be simultaneously located within the charging

is

jl
jl
o

jl
o

js
jl

jl 
js

is

jl
o



jl
o

Fig. 5. An example of adjusting
the MC’s orientation.
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jl
o

jl
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jl
o

Fig. 6. An example of replacing
the sojourn location.

range by rotating the MC. If we replace lj with another
candidate sojourn location l′j , and determine an appropriate
orientation, si and sj will be charged simultaneously. Based
on the above observations, we design Alg. 2.

Alg. 2 proceeds as follows. First, we call all sensors in P ′

whose distance from the dropped sensor si is not greater than
Dm+Db as neighbors of si. We denote by SN (si) the set of
neighbors of si and sort these neighbors in increasing order of
the distance from si (i.e., dsN1 (si),si < dsN2 (si),si < ...). Then,
we scan each neighbor sNj (si) in SN (si) to determine whether
the distance between its corresponding sojourn location lNj (si)
and si is not greater than Dm. If so, we will try to adjust its
corresponding orientation to rescue si. The adjustment can
be divided into two cases: (i) when ∠sNj (si), l

N
j (si), si ≤

θm, the MC is rotated in the direction close to si until
reaching si on the boundary of the main lobe; (ii) when
∠sNj (si), l

N
j (si), si ≥ π − θm+θb

2 , the MC is rotated in the
opposite direction from si until reaching si on the boundary
of the back lobe. After adjusting the orientation, when two
premise conditions: a) si can survive until it is added to P ′;
b) it will not cause other sensors dead, are both satisfied, we
will update ⟨lNj (si),

−−−−→olNj (si)⟩ in P ′ and add ⟨li,−→oli⟩ to P ′.
When si cannot be rescued by adjusting the orientation, we

will try to rescue it by replacing an existing sojourn location
in P ′ with a new candidate sojourn location. We scan each
neighbor sNj (si) in SN (si) to determine whether there is
a nearby candidate sojourn location l∗j that can cover both

Algorithm 2: Dropped Sensor Rescue algorithm
Input: A charging path P ′ and a strategy ⟨li,−→oli⟩

corresponding to the dropped sensor si
Output: An optimized path P ′

1 Sort all neighbors in SN (si) in increasing order of the
distance from si;

2 for each neighbor sNj (si) in SN (si) do
3 if dlNj (si),si

≤ Dm then
4 Aadjust the orientation −−−−→olNj (si)

until reaching si on
the boundary of the charging area;

5 Update the strategy ⟨lNj (si),
−−−−→olNj (si)

⟩ in P ′;
6 if tarrli

≤ TD(si) then
7 Add ⟨li,−→oli⟩ to the tail of P ′, return P ′;

8 for each neighbor sNj (si) in SN (si) do
9 for each sojourn location l∗j in L do

10 if l∗j can cover si and sj then
11 Add ⟨li,−→oli⟩ to the tail of P ′, return P ′;

12 Return the optimized charging path P ′;
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Fig. 7. An example of optimizing charging path.

sNj (si) and si, and judge whether two premise conditions
mentioned above are both satisfied when MC is scheduled
to l∗j . If so, we will replace ⟨lNj (si),

−−−−→olNj (si)⟩ with ⟨l∗j ,
−→ol∗j ⟩,

update the deadline of all sensors in P ′, and add ⟨li,−→oli⟩ to
the tail of P ′. If there is no candidate sojourn location near
all neighbor sensors in SN (si) that can rescue si, Alg. 3 will
be called to optimize P ′.

C. Charging Path Optimization Algorithm

As demonstrated in line 11 of Alg. 1, when the dropped
sensor si cannot be rescued by calling Alg. 2, we use Alg. 3 to
optimize the initial charging path. Our optimization objective
is to preserve more time for subsequent scheduling, so that
the MC can charge the sensors in the to-be-charged queue Qt

as soon as possible. Since the traveling cost of MC moving
to each sojourn location is not equal, an effective way to
shorten the length of the charging path is to replace the sojourn
location lmax

tr , which has the highest traveling cost in P ′, with
the sojourn location li corresponding to the dropped sensor si.
For the replacement, the following two conditions should be
satisfied: (i) the number of dead sensors brought by removing
lmax
tr will not be greater than one; (ii) after deleting lmax

tr , si
can be added to the charging path before its deadline, and the
new path has less total traveling cost Ttotal.

We use an example to illustrate how to optimize the
charging path by replacing sojourn locations. As shown in
Fig. 7, P = (⟨l1,−→ol1⟩, ⟨l2,−→ol2⟩, ⟨l3,−→ol3⟩, ⟨l4,−→ol4⟩) is the initial
charging path. It can be seen that l3 is far away from its adja-
cent sojourn locations l2 and l4, so l3 has the highest traveling
cost. Obviously, removing l3 can not only significantly shorten

Algorithm 3: Charging Path Optimization algorithm
Input: A charging path P ′ and a strategy ⟨li,−→oli⟩

corresponding to the dropped sensor si
Output: An optimized path P ′

1 Ptemp ← P ′;
2 for any three adjacent sojourn locations la, lb, lc do
3 f(lb) = dla,lb + dlb,lc − dla,lc ;

4 l∗b ← arg max f(lb);
5 Remove strategy ⟨l∗b ,−→ol∗b ⟩ from Ptemp;
6 Connect l∗a and l∗c in Ptemp;
7 for f ← |Ptemp| to 1 do
8 Select ⟨li,−→oli⟩ as the f th strategy to join Ptemp;
9 if Nds(Ptemp) == Nds(P

′) AND Ttotal(Ptemp) < Ttotal(P
′)

then
10 P ′ ← Ptemp, Nd(s)← Nd(s) ∪ {si}, break;
11 else
12 Remove the f th strategy from Ptemp;

13 Return the optimized charging path P ′;
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Fig. 8. An example of exchanging two sojourn locations to improve EUE.

the length of the charging path, but also make it probable for
MC to have a great chance to charge the dropped sensor si
before its deadline. Here, we use Eq. (18) to find the sojourn
location lmax

tr with the highest traveling cost in P ′:

lmax
tr = arg max

lj∈P ′
(dlj−1,lj + dlj ,lj+1 − dlj−1,lj+1). (18)

Alg. 3 proceeds as follows. We scan the constructed charg-
ing path P ′ to find lmax

tr . Then, we remove lmax
tr and connect

its two adjacent sojourn locations.
Subsequently, we scan the connected path for an appropriate

position to insert the ⟨li,−→oli⟩ corresponding to si. If the
new path satisfies the two replacement conditions mentioned
above, we will add the sensor corresponding to lmax

tr to Nd(s).
Otherwise, lmax

tr will be added back to P ′ and si will be added
to Nd(s).

D. EUE Optimization Algorithm

After the initial charging path P ′ is contracted, we con-
centrate on the secondary objective: how to maximize the
energy usage effectiveness (EUE). Recall that the total energy
consumption of the MC consists of three parts: the energy
obtained by sensors Epl, the traveling energy consumption
Etr, and the energy loss during charging Elo. According to
Eq. (11) and (12), to achieve the maximal EUE, two following
factors should be considered based on its definition: (i) shorter
traveling length results in greater EUE; (ii) shorter charging
distance also leads to greater EUE.

Algorithm 4: EUE Optimization algorithm
Input: An initial charging path P ′ and the EUEP ′ obtained

by the MC in P ′

Output: A final charging path P and the EUEP obtained by
the MC in P

1 Ptemp ← P ′;
2 for count← 0 to M do
3 Randomly select two sojourn locations li and lj(i < j)

from Ptemp;
4 Take the sub-path from l1 to li−1 and add it in order to

Ptemp;
5 Take the sub-path from li to lj and add them in reverse

order to Ptemp;
6 Add the sub-path from lj+1 to lNl in order to Ptemp;
7 if Nds(Ptemp) == Nds(P

′) AND EUE(Ptemp) > EUE(P ′)
then

8 P ′ ← Ptemp, count← 0;
9 else

10 Ptemp ← P ′, count← count+ 1;

11 Return the final charging path P ;
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We use an example to demonstrate how can we achieve
the maximal EUE by jointly considering these two factors.
Fig. 8(a) gives the initial charging path and its charging order
is BS→ l1 → l2 → l3 → l4 → l5 →BS. It can be seen that s is
located at the overlapping charging area of l3 and l4. Assume
that the residual energy of s is relatively more, it can be fully
charged no matter whether MC is staying at l3 or l4.

Intuitively, if we exchange the charging order of l3 and l4,
not only the charging path length can be reduced significantly,
but s can be fully charged with a shorter charging distance
when MC is staying at l4. The scheduling result of the
optimized charging path is shown in Fig. 8(b).

From this example, it can be seen that exchanging the
charging order of the initial path can jointly address the two
factors mentioned above. Inspired by this observation, we
design Alg. 4, a charging order exchanging-based optimization
algorithm, to maximize the EUE.

Alg. 4 proceeds as follows. Assume there are total Nl

sojourn locations in P ′. We randomly select two sojourn
locations li and lj(i < j) from P ′. Then we rearrange the
sub-path from li to lj in reverse order while the other sub-
paths remain in the same order, together forming a temporary
path Ptemp. If compared with P ′, Ptemp has the same number
of dead sensors and a higher EUE, we will assign Ptemp to P ′.
These process will be repeated until a continuous M-times
exchange of two randomly selected sojourn locations cannot
lead to further improvement of EUE.

IV. THEORETICAL ANALYSIS

Recall that the essential purpose of Alg. 1 is to construct
a charging path for the MC that minimizes the number of
dead sensors. Hence, we sort the charging requests received
by BS in increasing order of their urgency. In each iteration,
we greedily selected the sensor with the most urgent charging
request and added it to the charging path. To bound the
performance, we present the approximation ratio analysis.

Theorem 1. The Alg. 1 delivers an approximate solution to
the dead sensors minimization problem with the approximation
ratio of max{ β2

(Dm+β)2 ,
1√

2(
√
N+1)

}.

Proof: Consider a special case of Alg. 1 that sensors
are evenly distributed in the network. First, we analyze the
relationship between the energy consumed by the MC and its
battery capacity. For the optimal solution, we have:

Epl
opt + Etr

opt + Elo
opt ≤ B. (19)

Note that, when the MC stays at a sojourn location, its
transmitted power PT is spent on two parts, one part is
obtained by sensors and the other part is lost during the
charging process. Suppose that the charging duration of MC at
each sojourn location and traveling distance between sojourn
locations are evenly distributed, the average charging duration
is denoted as T avg

opt , and the average traveling distance is
denoted as davg

opt , we have the following equation:

(N −N∗
ds) · (PT · T avg

opt + davg
opt · c) ≤ B, (20)

where N is the number of sensors in the network, N∗
ds is the

number of dead sensors in the optimal solution, and c is the
energy consumed by traveling one unit distance.

Similarly, for our approximated solution, we have:
(N −N ′

ds) · (PT · T avg
appr + davg

appr · c) ≤ B, (21)
where N ′

ds is the number of dead sensors in the approximated
solution, which is the output of Alg. 1.

Here, we consider the best case for the optimal solution:
all sensors are charged close enough to the MC, and the MC
visits each sojourn location with the shortest traveling distance,
i.e., the uniform interval of adjacent sojourn locations. So we
replace T avg

opt and davg
opt by bβ2

Gmµ and Ln

⌈
√
N⌉ . For the approximated

solution, we greedily select the sensor with the shortest
residual lifetime to charge it in each iteration. Consider the
worst case, i.e., all sensors are located at the farthest part of
the charging area of the MC and the MC visits each sojourn
location with the maximum traveling distance. So we replace
T avg

appr and davg
appr by b(Dm+β)2

Gmµ and
√
2Ln, we have:

(N −N∗
ds) · (PT · bβ2

Gmµ
+

Ln

⌈
√
N⌉

· c) ≤ B, (22)

(N −N ′
ds) · (PT · b(Dm + β)2

Gmµ
+

√
2Ln · c) ≤ B. (23)

By combining Eq. (22) and Eq. (23), we have:

N∗
ds

N ′
ds

≤ (N −N∗
ds)

(N −N ′
ds)

≤
PT · bβ2

Gmµ + L
⌈
√
N⌉c

PT · b(Dm+β)2

Gmµ +
√
2Lc

≤ max{ β2

(Dm + β)2
,

1√
2(
√
N + 1)

}.

(24)

Therefore, the number of dead sensors obtained by our
solution is smaller than max{ β2

(Dm+β)2 ,
1√

2(
√
N+1)

} of the
optimal solution, and Theorem 1 is proved.

In Alg. 1, when a sensor cannot be charged in time,
Alg. 2 and 3 will be called in turn to rescue it, eventually
constructing an initial charging path. Our secondary objective
is to maximize the EUE under the constraint that the number of
dead sensors is minimized, so we designed Alg. 4 to maximize
the EUE of the initial charging path. We show the approximate
ratio analysis of Alg. 4 and the corresponding proof.

Theorem 2. The Alg. 4 delivers an approximate solution to
the EUE maximization problem with the approximation ratio
of roughly

√
Nl.

Proof: To maximize the EUE, Alg. 4 will try to exchange
the charging order of two selected sojourn locations. We
notice the basic idea of this solution is similar to the 2-
opt algorithm [37], which is perhaps the most widely used
local search algorithm for the Traveling Salesman Problem. By
deleting two edges of the path and reconnecting them in the
other possible way, 2-opt can find the shortest path. Following
a theoretical derivation similar to that shown in [38], we can
prove that Alg. 4 achieves an expected approximation ratio of
roughly

√
Nl, where Nl is the number of sojourn locations in

the charging path. Here, we omit the proof but refer readers
to [38] for details.
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Fig. 9. Performance comparisons by varying the number of sensors.

V. SIMULATIONS

A. Simulation Setup
We consider a WRSN consisting of 100-200 sensors, which

are distributed on a 2D plane of 100m×100m, in which the BS
is located at the center of the plane. Each sensor is powered by
an alkaline rechargeable battery with the capacity b = 1.5V×
2A × 3, 600sec = 10.8KJ [11]. Before the simulation starts,
the sensor residual energy re is randomly set between 0.1b
and 1b. Moreover, the energy consumption rate ec of each
sensor randomly ranges between 0.05J/s and 0.5J/s. When the
ec = 0.5J/s (i.e., the maximal value), the residual lifetime of
a sensor with full battery can reach 6 hours, thus we set the
lifetime threshold θl = 6h.

We assume that the battery capacity B of MC is 2, 000KJ,
and the moving speed and the moving cost of MC are 5m/s
and 50J/m, respectively [11]. By fitting our experiment data
and referring to the hardware parameters of the equipment,
the parameters of the charging model in Eq. (11) are set as:
µ = 0.31, β = 0.053, Gm = 8, θm = π/3, Gb = 1.856, and
θb = 2π/3. According to the field experiment we performed
in Fig. 2, we set the farthest charging distance of the main
and back lobes as 2.6m and 1.3m, respectively. The energy
transmission power of the MC is set to 3W.

To evaluate the performance of our proposed BACK algo-
rithm, we compare it with the following charging algorithms.
Main Lobe Charging (MLC) [19] algorithm is a directional
charging algorithm that only utilizes the main lobe. MLC con-
siders the anisotropy of the received energy, and its objective
is to jointly optimize the number of dead sensors and EUE.
Lifetime Maximization Charing (LMC) algorithm is also
an directional charging algorithm that only utilizes the main
lobe. However, the objective of LMC is to minimize the
number of dead sensors. Therefore, LMC does not include
the optimization algorithm based on the idea of exchanging
sojourn locations.
Nearest-Job-Next with Preemption (NJNP) [16] is an on-
demand charging algorithm for the single-sensor charging
model. To save time and energy spent traveling, NJNP always
serves the nearest sensor with a charging request.

B. Performance Comparisons
In this section, we evaluate the performance of our proposed

scheme by comparing it with the three comparison algorithms
under different number of sensors N and the beamwidth of
the back lobe θb.

1) Impact of the number of sensors N : Fig. 9(a) shows the
influence of the N on the number of dead sensors. As the
number of sensors in the network increases, the Nds yielded
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Fig. 10. Performance comparisons by varying θb.

by all algorithms increases. However, we can see that BACK
outperforms other algorithms by an average of 51.9%, and this
advantage is even more evident when there is a greater number
of sensors. This is because BACK is more likely to use the
back lobe to charge more sensors simultaneously.

Fig. 9(b) compares another performance metric, EUE.
BACK achieves 10.2% higher EUE than other algorithms
on average. The rationale behind this is two-fold: (i) BACK
makes full use of the energy radiated from the back lobe to
charge more sensors simultaneously by adjusting the MC’s
orientation; (ii) the charging order exchanging-based EUE op-
timization algorithm can further shorten the traveling distance
and reduce energy loss. Moreover, by comparing MLC and
LMC, we find that although none of them take into account
the energy radiated by the back lobe, LMC has a lower EUE
due to the absence of EUE optimization.

Then, we measure the total traveling distance. From Fig.
9(c), we can see that NJNP has the best performance. The
reason is that NJNP causes much larger Nds than other
algorithms do, the total traveling distance generated by NJNP
is the shortest. Fig. 9(c) also shows that BACK has a shorter
traveling distance than MLC and LMC. This is because full use
of the back lobe can reduce the number of sojourn locations
visited, thus effectively shortening the traveling distance.

2) Impact of the beamwidth of the back lobe θb: We fix the
number of sensors at 150 and further investigate the impact
of θb. Fig. 10(a) shows the comparison of Nds. On average,
BACK outperforms other algorithms by 47%. It also can be
seen that with the increase of θb, the Nds generated by all
algorithms increases. This is because, with the increase of θb,
the back lobe energy gradually disperses, making the energy
intensity received by the sensors covered by the back lobe also
decrease. Therefore, it is difficult for these sensors to obtain
sufficient energy to guarantee their survival.

Fig. 10 compares the other two metrics, EUE and traveling
distance. In Fig. 10(b), the EUE yielded by all algorithms
decreases slightly as θb increases. The reason is that the more
dispersed the back lobe energy is, the smaller the ratio of the
energy received by sensors to the total energy radiated by the
back lobe is, resulting in more energy loss in the charging
process. Fig. 10(c) shows that the change of θb does not
significantly influence the traveling distance of all algorithms.

Combining the results of Fig. 10, we can observe that the
smaller the beamwidth of the back lobe, the more energy the
sensor located in the back lobe region can receive from the
more concentrated energy beam. Therefore, chargers equipped
with antennas with larger back lobe gain can provide better
charging service.
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Fig. 12. Performance comparisons.

VI. FIELD EXPERIMENTS

In this section, we conduct field experiments to evaluate the
performance of our algorithm. As shown in Fig. 11, our testbed
consists of a robot car equipped with a TX91501 Powercast
wireless charger, eight rechargeable sensors equipped with
omnidirectional antennas, and an AP connecting to a laptop
to report the collected data from the sensors. The robot car
moves at a speed of 0.3m/s and consumes energy at a rate of
5.59J/m [17]. Sensors are deployed in a 400cm× 300cm area,
and their coordinates are (70, 250), (100, 225), (115, 150),
(240, 75), (275, 240), (325, 75), (340, 260), (360, 160). Fig.11
also shows the actual charging path constructed by BACK.

Fig. 12 compares the four metrics, Nds, EUE, Ltr, and Nl,
where Nl is the number of sojourn locations in the charging
path. Consistent with the simulation results, BACK outper-
forms the other three algorithms. The reason can be explained
by Fig. 13, which depicts the charging paths constructed by
the four algorithms. By making full use of the main and back
lobes, we can observe that BACK covers more sensors at each
sojourn location, which greatly reduces the number of sojourn
locations visited, thus shortening the traveling distances and
ensuring the survival of all sensors.

VII. RELATED WORK

There are many studies on scheduling mobile chargers for
WRSNs service, which can be divided into two categories
based on the type of antenna the charger is equipped with:
omnidirectional charging scheduling [5], [11], [12] and direc-
tional charging scheduling [19]–[21].
Omnidirectional charging scheduling: Most previous studies
employ mobile chargers equipped with omnidirectional anten-
nas to charge sensors. To achieve energy provisioning under
complex weather conditions, Zhou et al. [5] proposed a self-
sustained WSN by integrating multi-source energy harvesting
with mobile charging. In [11], Liu et al. designed a partial
charging mechanism to jointly optimize the number of dead
sensors and the energy usage effectiveness. Xu et al. [12]
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Fig. 13. Charging paths constructed by four algorithms.

studied the effective scheduling of multiple mobile chargers
to charge sensors so that the maximum charging delay can be
minimized. Nevertheless, omnidirectional antennas broadcast
energy in all directions, resulting in low energy intensity
within the charging range.
Directional charging scheduling: There exist some stud-
ies employing chargers equipped with directional antennas.
In [19], Lin et al. considered how to minimize charging
delay by utilizing the anisotropic energy receiving property
of sensors in directional charging. Sun et al. [20] concentrated
on utilizing hybrid chargers and using freeloading directional
chargers to recycle the wasted energy, so as to improve the
energy efficiency of the whole network. Dai et al. [21] studied
how to schedule a directional charger to recharge sensors in
an arbitrary simple polygon with the charger only allowed to
move along the polygon boundaries. However, they overlooked
that the back lobe has significant energy, which is wasted.

VIII. CONCLUSION

The key novelty of this paper is to propose the first
charging scheduling scheme which considers the back lobe
in directional charging. The main contribution of this paper is
to establish the directional charging model with the main and
back lobes and verify the model by conducting experiments.
Based on this model, we concentrate on jointly optimizing the
number of dead sensors and energy usage effectiveness. To this
end, we propose a scheme consisting of four sub-algorithms.
Theoretical analysis shows that our scheme can approximate
the minimum number of dead sensors and the maximum
energy efficiency with a close ratio. Moreover, our simulation
and field experimental results show that our proposed scheme
significantly outperforms the existing algorithms.
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