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Abstract—Recently, deploying static chargers to construct
timely and robust Wireless Rechargeable Sensor Networks
(WRSNs) has become an important research issue for solving the
limited energy problem of wireless sensor networks. However, the
established fixed power distribution lacks flexibility in response
to dynamic charging requests from sensors and may render
some sensors to be continuously impacted by destructive wave
interference. This results in a gap between energy supply and
practical demand, making the charging process less efficient. In
this paper, we focus on the real-time sensor charging requests
and formulate a dynamic power disTributIon controlling for
Directional chargErs (TIDE) problem to maximize the overall
charging utility. To solve the problem, we first build a charging
model for directional chargers while considering wave inter-
ference and extract the candidate charging orientations from
the continuous search space. Then we propose the neighbor set
division method to narrow the scope of calculation. Finally, we
design a dynamic power distribution controlling algorithm to
update the neighbor sets timely and select optimal orientations for
chargers. Our experimental results demonstrate the effectiveness
and efficiency of the proposed scheme, it outperforms the
comparison algorithms by 142.62% on average.

Index Terms—directional charging, power distribution control-
ling, wave interference, wireless power transfer

I. INTRODUCTION

With the advance of Wireless Power Transfer (WPT)
technology [1], Wireless Rechargeable Sensor Networks
(WRSNs) [2]–[11] have witnessed the bloom in recent years.
This progress has alleviated the long-standing challenge of
limited energy capacity that used to hinder the development
of wireless sensing. Moreover, the employment of directional
chargers further promotes charging efficiency since their high-
gain and directional antennas enable the concentration of
radiated energy in a narrow beam, thereby enhancing power
intensity at some intended angle. In light of this, much
effort has been devoted to exploring network performance
improvements for directional charging [12]–[24].

In the directional charging network, static chargers, which
are deployed with fixed locations and orientations to emit
energy continuously, are preferable to mobile chargers in many
scenarios. Their merits of timeliness and robustness empower
them to better cope with the changes in the network without
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Fig. 1. Power distribution under different chargers’ orientations.

concerning their own energy supply [14]–[17]. It is noted that,
in order to prevent coverage holes and simultaneously improve
charging efficiency, it is necessary and unavoidable for the
charging ranges to overlap when deploying static chargers. In
that case, sensors located within these overlaps will receive
multiple electromagnetic waves from chargers concurrently,
and subsequent wave interference [25] will exert a significant
impact on the final power received by sensors. For example,
destructive interference may result in sensors covered by more
chargers receiving less power instead, which neither fully
utilizes the charger resources nor achieves the desired results.

The state-of-art literature [26] has devoted attention to wave
interference, which refers to the power distribution obtained
from an elaborated charger placement algorithm. And they
carefully select sensor deployment locations in the high-power
interference enhanced regions to avoid negative effects. This
scheme indeed promotes charging efficiency, but there are two
negligible shortages: (i) achieving sensor deployment accuracy
at the millimeter level presents a huge challenge in terms of
network construction costs, it is also not a general solution in
scenarios where a large number of sensors need to be randomly
scattered [27]; (ii) once chargers are deployed, the power
distribution of the whole network becomes fixed, lacking
flexibility in response to dynamic charging requests from
sensors and little improvement in the utilization of charger
resources.

A more ideal charging method would be to always locate
sensors with charging requests in high-power interference



enhanced regions. And once a sensor is fully charged, there
is no longer preferential treatment for it. This entails ac-
commodating the diverse requests of different sensors and
tailoring the power distribution accordingly. Take Fig. 1 as an
example, which shows the power distribution of three direc-
tional chargers. The colored sector presents the charging range
of each charger with brighter/darker indicating interference
enhanced/weakened regions. Let’s consider the case where
sensor s1 with charging request can first receive considerable
power. Once s1 is fulfilled, sensor s2, which was originally
located within the interference weakened region, sends a
charging request. To satisfy its demand, two chargers change
their orientations, introducing a new power distribution. With
this adjustment, s2 can now receive a significantly higher
power than before without any movement. The rationale lead-
ing to these differences is the nonlinearity of the interference
effect resulting from multiple waves and the change in the
number of chargers involved.

This example inspires us to understand the importance of
power distribution control in addressing the dynamic demands
of the network. In this paper, we focus on a more practical
scenario where sensor locations can not be further adjusted
and they will launch real-time charging requests according to
their dynamic residual lifetimes. Our goal is to respond to
sensors’ charging requests in an online manner by dynamically
controlling the power distribution and finally maximizing the
overall charging utility. Thus, we state our dynamic power
disTributIon controlling for Directional chargErs (TIDE) prob-
lem as follows. Given a number of rotatable directional charg-
ers with fixed locations and a set of sensors, how to design
an optimal dynamic power distribution controlling scheme to
maximize the overall charging utility for all sensors while
taking the wave interference into consideration.

Generally, there are three main challenges in our problem.
The first challenge arises from the nonlinearity when build-

ing the charging model for directional chargers while consid-
ering wave interference. It encompasses multiple factors such
as charging distances, orientations, the number of chargers
involved in wave interference, and so on.

The second challenge lies in the difficulty of ensuring
the desired power distribution always appear around sensors
with charging requests by adjusting the orientations of the
chargers. This is because the orientation decisions of chargers
will interact with each other due to wave interference, and
this interaction does not only occur between directly adjacent
chargers, it is more transitive and may affect chargers that are
far away without any overlap.

The third challenge is that the real-time charging requests
from sensors ask us to make decisions in an online manner,
while the optional orientations at different times are dynam-
ically changing and the charging demand of each sensor is
different. Besides, there are infinite orientations available for
a charger and picking up an orientation from the candidate set
is similar to solving a multiple-choice knapsack problem [28],
which is NP-hard.

To tackle these challenges, we first incorporate the power

amplitude relationship into the directional charging model
and figure out the influence of various factors on the power
received by sensors. Then, we extract the dominant sensor set
to filter candidate orientations without causing performance
loss for the problem of continuous search space and a further
division is carried out considering the negative effects of de-
structive interference. We also propose the concept of neighbor
set to organize the chargers that will interact with each other in
every time slot. Afterwards, we accordingly design a dynamic
power distribution controlling algorithm to update the neighbor
sets timely and select optimal orientations for chargers that
maximize the charging utility of the whole network.

The main contributions of this work are summarized below.
• To the best of our knowledge, we are the first to study

the dynamic power distribution controlling of directional
chargers that considers both sensors’ online requests and
wave interference. We build a practical charging direc-
tional model incorporating wave interference for this.

• We develop a candidate sensor sets extraction algorithm
to reduce the computation complexity and the negative
impact of destructive interference. We prove the NP-
hardness of the charger orientation selection process and
further design a dynamic power distribution controlling
algorithm to determine the charger orientations according
to the sensor requests.

• Extensive simulations and field experiments are con-
ducted to verify our scheme, the results show that our
scheme outperforms other comparison algorithms by
142.62% on average in charging utility.

II. PRELIMINARIES

A. Network Model

Suppose there are N omnidirectional sensors denoted as
S = {s1, s2, . . . , sN} located on a 2D plane Ω with battery
energy capacity b. The energy consumption rate and residual
energy of each sensor are denoted as eci and rei, respectively.
Accordingly, the residual lifetime rli of si is rei

eci
. There

are also M static directional chargers C = {c1, c2, . . . , cM}
deployed in advance to provide charging service for sensors,
which can continuously rotate within [0, 2π).

Basically, once the rli is less than a lifetime thresh-
old Υl, sensor si will launch a charging request REQi =
(t, si, rei, eci, b − rei) to the chargers that possibly can emit
power to it, where t is time point and b − rei represents
the amount of energy required to be replenished. A request
queue Sreq

j will be maintained in each charger to store the
received charging requirements and the chargers will schedule
their orientations thus controlling the power distribution in an
online manner to serve the requests when the queue updates,
i.e., a sensor sends a new charging request or a request is
fulfilled. A power distribution will last until a new batch of
charging orientations are calculated with the arrival of the next
update of the queue.

Considering the continuity of time, we apply a time dis-
cretization mechanism to partition the time into multiple time
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Fig. 2. Charging model.

slots with uniform duration ∆t. For simplicity, we assume
the request queue always updates at the beginning of a time
slot. Since the orientation transform process for rotatable
cradles where directional chargers are mounted only lasts a few
seconds or even shorter [29], we can set the duration of a time
slot as dozens of seconds, so that the calculation for charging
orientations and the rotation of corresponding chargers can be
finished within a time slot. Besides, it is worth mentioning
that the charging duration to fully charge a sensor always
costs dozens of minutes to hours [11], [12], [30] and a sensor
with full battery capacity can work for days to weeks [31].
Therefore, slots of tens of seconds long will also prevent a
new request from being unresponsive for a long time.

B. Charging Model

We demonstrate our charging model with reference to the
general model proposed in [15]. Typically, the charging area
of a directional charger is modeled as a sector with charging
angle Φ and radius D, only the omnidirectional sensors located
within the scope can receive non-negligible power. As shown
in Fig. 2, there are two chargers c1 and c2 with working
orientations denoted by vectors −→rθ1 and −→rθ2 , respectively.
Obviously, s1 can be charged by them concurrently while s2
only receives power from c1, and s3 can not be replenished
because it has out of the scope of the sector of any chargers.

To mathematically describe the impact of the wave inter-
ference in the directional concurrent charging scenario, we
formulate a charging model incorporated with it. First, the
radiated wave arriving at sensor si from a single directional
charger cj can be presented as:

a(t) =
A0

ˆ||sicj ||
cos(2πft− 2π

λ
||sicj ||). (1)

In Eq. (1), A0 is the amplitude of the wave, ||sicj ||
represents the distance between sensor si and charger cj .

ˆ||sicj || = ||sicj ||+β√
α

refers to the attenuation factor for wave
propagation due to the empirical model proposed in [32],
the α = GsGr

Lp
( λ
4π )

2, where Gs, Gr are charger and sensor
antenna gain, respectively, and λ is the wavelength, Lp is the
polarization loss. β is a parameter to adjust the Friis’ free
space equation for short distance transmission.

Given a period of time of duration T , thereby, the average
power arrived at si over that period can be calculated by

1
T

∫ T
2

−T
2

[a(t)]2dt. Accordingly, we have the power arrived at si
from a single charger as:

p
θj
si|cj =


A2

0

2 ˆ||sicj ||
2 0 ≤ ||sicj || ≤ D,

−−→sicj · −→rθj − ||sicj || cos(Φ/2) ≥ 0,

0, otherwise.

(2)

Actually, for sensor si, all chargers within D on the plane
are its potential providers, we can obtain a set Ci based on the
known locations of chargers and sensors, where |Ci| = mi.
Thus, the combined wave arrived at si can be presented as:

Asi|Ci
(t) = Ai

0 cos(2πft− ϕ)

=

mi∑
j=1

A0

ˆ||sicj ||
cos(2πft− 2π

λ
||sicj ||),

(3)

where Ai
0 =

√
miA2

0+2A2
0

∑mi

j>l

∑mi

l=1cos(2π
||sicj ||−||sicl||

λ ),
which presents the combined amplitude arrived at sensor si, ϕ
is the phase. Considering the limited space, we will use ∆φjl

instead of 2π ||sicj ||−||sicl||
λ in the following text. Similarly, the

corresponding combined power arrived at si can be written as
follows:

Psi|Ci
=

1

T

∫ T
2

−T
2

[Asi|Ci
(t)]2dt

=
1

T

∫ T
2

−T
2

[ mi∑
j=1

A0

ˆ||sicj ||
cos(2πft− 2π

λ
||sicj ||)

]2
dt

=
A2

0

2

mi∑
j=1

1

ˆ||sicj ||
2 +

mi∑
j>l

mi∑
l=1

2cos(2π
||sicj ||−||sicl||

λ )

ˆ||sicj || · ˆ||sicl||


=

mi∑
j=1

p
θj
si|cj+2

mi∑
j>l

mi∑
l=1

√
p
θj
si|cjp

θl
si|clcos(∆φjl).

(4)

Note that, if and only if the orientation of a charger is turned
to enable the effective area to cover si, can si receive the non-
negligible power. Literally, si can be charged concurrently by
all chargers in Ci only when the following condition is met:
∀cj ∈ Ci,

−→rθj − ||sicj || cos(Φ/2) ≥ 0, 0 ≤ ||sicj || ≤ D.
With the Eq. (4), it is thus possible to visualize the power
distribution in the network, and the effect of the influencing
factors can also be clearly seen.

C. Utility Model

Committed to maintaining a high-efficiency network, the
dynamic power distribution should always be targeted to serve
the requested sensors. To avoid the sensor without charging
requirement preempting the priority of the requested sensor,
accordingly, we stipulate the charging utility generates only
when the sensors in the request queue are served. Limited by
the rated power Pth of the practical electric circuits for each
rechargeable sensor, the utility function of sensor si in Sreq

j

during kth time slot can be written as:

u(P k
si) =

{
Pk

si
·∆t

b−rei
, P k

si < Pth,
Pth·∆t
b−rei

, P k
si ≥ Pth,

(5)



where P k
si is the power arrived at si in the k-th time slot

under a certain power distribution. As we can see, the utility
is broadly proportional to the arrived power, where a larger
utility relies on higher arrived power at the requested sensor.
With the shorter charging duration to fulfill the requests
under considerable power, the chargers are able to serve more
following requested sensors. We formulate this fraction to
normalize the charging utility so that it will accumulate to 1
when the request of si is fulfilled after several time slots.

D. Problem Formulation

In the scenario where directional chargers can rotate with
their orientations varying from 0 to 2π to toggle power
distribution, we define θj(k) as the orientation of charger cj
at k-th time slot. Thus, the power arrived at si at k-
th time slot can be written as P k

si =
∑mi

j=1 p
θj(k)

si|cj +

2
∑mi

j>l

∑mi

l=1

√
p
θj(k)

si|cj p
θk(k)
si|cl cos(2π

||sicj ||−||sicl||
λ ).

Our goal is to dynamically control the power distribution
by scheduling the charging orientations of static directional
chargers in each time slot to maximize the charging utility
(i.e., fulfill the requests as much as possible) of the whole
network lifetime (considered as K time slots). Formally, we
define the problem of dynamic power disTributIon controlling
with Directional chargErs (TIDE) as follows:

(P1) max U(total) =

K∑
k=1

∑
si∈Sreq

u(P k
si),

s.t. K ∈ Z+
0 .

(6)

where the Sreq denotes the set of all requested sensors of the
whole network.

III. SOLUTION

In this section, we aim to determine the specific power
distribution at each queue update to address the TIDE problem
during the whole lifetime of sensor networks. First, we identify
all feasible power distributions by extracting a finite number
of candidate sensor sets and obtaining the corresponding
candidate charging orientations from the continuous solution
space. Then, we accordingly reformulate the TIDE problem
and narrow the scope of calculation at each decision point
by proposing the neighbor set. Finally, we design a dynamic
power distribution controlling algorithm to react to real-time
charging requests of different sensors in the network.

A. Candidate Sensor Sets Extraction

Despite there being infinite potential power distribution re-
sulting from the continuity of the orientations of each charger,
the fixed location relationship between chargers and sensors
indicates only a finite number of power distributions will im-
pact the final power sensors received. Thus, in this subsection,
we aim to identify this limited set of power distributions by
extracting some of the representative orientations according to
the following definition:

Definition 1. Dominant Sensor Set: given a set of sensors Si

that covered by a charger with orientation θi, if there does

not exist a sensor set Sj be covered by the same charger with
another orientation θj such that Sj ⊃ Si, then Si is called
Dominant Sensor Set of this charger.

We give an example of one charger and several sensors to
briefly sketch the process of the dominant sensor set extracting
in Fig. 3, which is also presented in lines 1-5 of Algorithm 1.
Basically, the charger rotates continuously to cover the sensor
one by one and records all the dominant sensor sets. The
charger firstly covers the s1 and s2, when trying to cover
the next sensor s3, the s1 will subsequently leave the current
sensor set, thus {s1, s2} is a dominant sensor set. With the
successive departure of s1 and s2, s3 is covered and s4 is then
added. Keeping rotating, s5 will not be further added without
missing s3, therefore, s3 and s4 form a dominant sensor set.
Similarly, the final obtained dominant sensor sets are {s1, s2},
{s3, s4}, {s4, s5} and {s6, s7, s8, s9}.

The extraction of dominant sensor sets enables the most
representative power distribution to be reproduced with the
least number of alternative orientations for chargers when
serving the requested sensors, which sharply reduces the com-
putational complexity. However, this behavior unintentionally
binds the sensors, providing a charging service to a sensor
will simultaneously charge other sensors in the same dominant
sensor set. It turns out that when one or more chargers rotate to
cover a set of sensors already covered by one charger, those
sensors may have completely different effects with the new
power distribution. Some sensors will gain significantly more
power from being covered by multiple chargers concurrently,
which is far greater than being covered by only one charger,
while some sensors may be significantly weakened, far less
than being served by fewer chargers. The rationale behind
this diversity is the effect of wave interference, interrelating
to the different locations of sensors and different distance
relationships with chargers. Formally, we call such a sensor a
black sheep (red dot in Fig. 3) when its energy obtained does
not increase with the number of chargers that will charge it and
others called premium sensor (black dot in Fig. 3). Considering
the situation that enhancing a sensor may weaken the overall
power of other sensors when selecting a power distribution,
we should separate the binding of sensors by further dividing
the dominant sensor set into several subsets.

Here our goal is to find all possible orientations that can
make the resulting power distributions sufficiently adaptive
to the diverse requests from the sensors. Basically, we will
discuss the process of subset partitioning for the following
three dominant sensor sets to perfect our solutions.

• For the dominant sensor sets that contain black sheep
only, we should find all subsets of them. The rationale
is that whichever black sheep is added to form a new
subset may have a debilitating effect on the utility of
the previous subset. It is caused by the difference when
different sensors are covered by the same power distribu-
tion. Thus, the obtained subsets of the dominant sensor
sets that contain black sheep only (blue sectors in Fig. 3),
e.g. {s1, s2}, are {s1}, {s2}.
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Fig. 3. Extraction of candidate sensor sets.

Algorithm 1: Extraction of candidate sensor sets and
candidate charging orientations

Input: The set of chargers C, the set of sensors S, the
farthest charging distance D, and other necessary
parameters

Output: All candidate sensor sets and candidate charging
orientations Θ

1 Find the subset of sensors Sj that could possibly covered by
charger cj and the subset of chargers Ci that could possibly
cover sensor si;

2 Initialize the orientation of the charger to 0;
3 Rotate the charger cj anticlockwise to cover the sensors in
Sj one by one until the sensor currently being covered is
about to leave. Terminate the rotating process once the
rotation angle is larger than 2π;

4 Add the current covered set of sensors to the collection of
dominant sensor sets;

5 Rotate the charger anticlockwise until a new sensor in Sj is
added in the covered set. Terminate the rotating process once
the rotation angle is larger than 2π. If not, goto line 4;

6 Calculate and find all black sheep sensors;
7 Divide the dominant sensor sets into 3 categories and obtain

all feasible subsets;
8 Union all dominant sensor sets and subsets as the collection

of candidate sensor sets;
9 Return the collection of all candidate sensor sets and

corresponding candidate charging orientations Θ;

• For the dominant sensor sets that do not include any black
sheep, we accordingly do not require a subset of them.
Since these premium sensors show consistency when the
power distribution alters, the dominant sensor sets are
more conducive to maintaining the survival of sensors.
Thus, in terms of the dominant sensor sets without black
sheep (pink and green sectors in Fig. 3), e.g. {s3, s4} and
{s4, s5}, the subsets are not necessary.

• For other dominant sensor sets that contain both premium
sensors and black sheep, we rotate the sector starting from
the first sensor in the set to obtain the subsets. Specif-
ically, we record all subsets, but overwrite the previous

subset when a premium sensor is newly added, and keep
the previous subset unchanged when a premium sensor
leaves. Note that if sensors and the charger covering them
are collinear such as the s6, s7, they are spontaneously
served by the same orientation, we deal with the special
case as only black sheep exist. Thus, for the dominant
sensor sets that contain both (yellow sectors in Fig. 3),
e.g. {s6, s7, s8, s9}, we get subsets {s6, s7}, {s8, s9} and
{s9}, respectively.

Finally, the candidate sensor sets are the union of dominant
sensor sets and subsets, the corresponding orientations enable
us to provide effective power distributions for the requested
sensors no matter how power received by sensor is affected
by the interference of the wave. Take Fig. 3 as an example,
the candidate sensor sets are {s1, s2}, {s1}, {s2}, {s3, s4},
{s4, s5}, {s6, s7, s8, s9}, {s6, s7}, {s8, s9} and {s9}. The
detailed process is shown in Algorithm 1.

B. Problem Reformulation

Suppose the corresponding candidate charging orientation
sets of the obtained candidate sensor sets for charger cj is Θj ,
the p-th candidate orientation in Θj is denoted as Θp

j . Let xp
j,k

be a boolean variable indicating whether the p-th orientation is
selected or not in the k-th time slot. Then the problem TIDE
can be formulated as:

(RP1) max U(total) =

K∑
k=1

∑
si∈Sreq

u(P k
si)

=

K∑
k=1

∑
si∈Sreq

( mi∑
j=1

xp
j,kp

θj(k)

si|cj

+2

mi∑
j>l

mi∑
l=1

xp
j,kx

q
l,k

√
p
θj(k)

si|cj p
θl(k)
si|cl cos(∆φjl)

)
.

s.t.

|Θj |∑
p=1

xp
j,k = 1, (xp

j,k ∈ {0, 1}, xq
l,k ∈ {0, 1}).

(7)
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Theorem 1. The TIDE problem RP1 is NP-hard.

Proof: We omit the proof due to space limitations.

C. Neighbor Set Division

By serving a request, we mean the directional charger ro-
tates to a corresponding orientation and charges the requested
sensors until the power distribution changes due to the updated
request queue. After extracting all feasible power distributions,
we focus on which chargers have to rotate to alter the power
distribution at each decision point. Compared with bothering
all chargers to change their orientations, in this subsection,
we propose a Neighbor Set Division method for the sake of a
faster calculation process. Basically, we present a concept to
assist analysis:

Definition 2. Neighbor Set: refers to a group of chargers in
a WRSN whose orientation selection affects each other due to
the existence of requested sensors. Specially, a single charger
can also serve as a neighbor set independently when it does
not interact with any other chargers.

For each charger to be a member of the neighbor set, the
necessary condition is that there must be at least one requested
sensor within its charging range. At this time, a charger’s
orientation determination directly affects whether the nearby
chargers can realize the concurrent charging for the commonly
covered sensors. Specifically, chargers with requested sensors
in their overlaps will invariably affect each other and belong
to the same neighbor set, while the chargers that do not harbor
any requested sensor in the overlap or do not have any overlaps
in their possible charging range will also exhibit mutual
influence. That is, if charger A influences charger B, and
charger B influences charger C, charger A will accordingly
influence charger C with the chain reaction of interconnected
chargers. These correlations among the chargers underscore
the influence scope of selecting a certain orientation and the
partition of the neighbor sets can effectively help us define this
scope. Consequently, when the charging demand of sensors
varies, we can select the orientations at the level of the
neighbor sets instead of the individual charger.

Since charging requests may arrive or be fulfilled at any
time, the structure of the neighbor sets will accordingly
undergo continuous modification according to the changes in

the intersection (i.e., commonly covered requested sensors) of
request queues for each charger. It will not only affect the
chargers with possible charging range overlapping but also
may establish/cut off the correlation of the chargers that are
farther away. We summarize how the structure of the neighbor
sets change when a request arrives, or a request is fulfilled,
respectively. Formally, we denote the collection of the current
neighbor sets in the network as {N1, N2, · · ·}.

• When a sensor si launches a request, there are three
possible cases of changes in the structure of the neighbor
sets: (1) if there is a current neighbor set harbors all
chargers that can cover si (i.e., Ci, which represents
the charger set that can possibly cover si, is a subset
of some current neighbor set), the neighbor sets remain
unchanged; (2) if there is no current neighbor set harbors
chargers that can cover si, (i.e., the intersection of Ci

and any current neighbor set is null), Ci independently
becomes a new neighbor set; (3) if there is one or more
neighbor sets harbor chargers that can cover si (i.e., Ci

has intersection with one or more neighbor sets), Ci

merges with these neighbor sets into a bigger set.
• When a requested sensor si is fulfilled, there are three

possible cases of changes in the structure of the neighbor
sets: (1) if Ci is used to constitute the exclusive neighbor
set and there is no other requested sensor in the request
queues of the chargers in Ci, the neighbor set used to
serve si does not exist anymore; (2) if the queues of
some chargers in Ci are empty while other chargers still
have commonly requested sensors in their queues, the
neighbor set used to serve si gets rid of a corresponding
proper subset (contains no more than |Ci| − 1 and no
less than 0 elements) of Ci; (3) if si is the only common
covered requested sensor amongst the chargers in Ci, the
neighbor set used to serve si is split into several subsets.

Fig. 4 demonstrates a neighbor set structure change process
as sensor charging demands change. We consider Fig. 4(a) as
the neighbor set structure at a certain moment, where neighbor
set N1, consisting of chargers c1 and c2, serves requested
sensor s2, and N2, comprising only c4, serves s5. If s1
launches a charging request at this time, {c5} independently
becomes a neighbor set N3 as shown in Fig. 4(b) since {c5}
does not intersect with the existing neighbor sets N1, N2. On
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Fig. 5. The pruning process.

the contrary, once s1 is fulfilled, N3 will not exist anymore
since there is no element in the request queue of c5. But if
it is the s4 that launches a request as shown in Fig. 4(c), the
neighbor sets N1, N2 and the C4 which contains c1, c3, c4
merge into one single set as {c1, c2, c3, c4}. Once s4 is
fulfilled, it leaves from the request queues of the chargers
c1, c3 and c4, the current neighbor set is then split into two
neighbor sets N1 and N2. The situation that s3 has a charging
request and then s2 is fulfilled is not illustrated in detail in
Fig. 4 since these two cases are very simple and do not cause
changes in the number of neighbor sets.

D. Dynamic Power Distribution Controlling Algorithm

After discretizing the orientations and narrowing the calcu-
lation range, in this subsection, we propose a dynamic power
distribution controlling algorithm to solve the TIDE problem.

Note that even if we can control the power distribution
only at the neighbor set level, there are still many options
available due to the mutual effect of chargers, which increases
exponentially with the number of chargers in the neighbor
set. In order to reduce the impact of this mutual influence
during dynamic control of power distribution, we also include
the combinations of orientations that directly overlap into the
candidate pool. Take Fig. 5 as an example, let’s consider a
neighbor set consisting of four chargers: A,B,C,D. For each
charger X , Xi is its candidate orientation. The numerical
value corresponding to each orientation represents the power
that can be provided by selecting this orientation. When
determining the orientation for A, our options are no longer
limited to A1 and A2 but A2B1 is included due to their mutual
influence. By this means, once A2B1 is selected, it will not
affect the subsequent outcome, thus reducing the difficulty of
controlling. Besides, the addition of new alternatives remains
manageable since the number of orientations that can directly
overlap is limited. Even though all sensors have charging
requests, we can employ the following pruning strategies to
ensure optimal orientation selection while maintaining low
computational complexity:

• Charger number limit pruning: since the orientation col-
lections are added as candidate options, the depth of each
branch (formed by each charger’s orientation) is different,
which may be 1 to |N |. Basically, when each charger has

Algorithm 2: Dynamic power distribution controlling
Input: Candidate charging orientations Θ, energy capacity

of each sensor b, lifetime threshold Υl and number
of considered time slots K for the whole network

Output: Power distributions A for all chargers
1 Update the set Sreq

j of sensors with charging requirements
that covered by charger cj ;

2 while k ̸= K do
3 if si sends a charging request, i.e., rei

eci
< Υl then

4 Compare Ci with current neighbor sets and update
neighbor set structure according to their
relationships;

5 Select the optimal power distribution for the newly
generated neighbor set N (cj) with the pruning
strategies, and add it to A;

6 if si is fulfilled then
7 Check the request queue for each charger in Ci and

split the neighbor sets according to the rest
requested sensors;

8 Select the optimal power distribution for the newly
generated neighbor set N (cj) with the pruning
strategies, and add it to A;

already been searched in the current branch, the branch
can be terminated directly and the current optimal solu-
tion can be returned. For example, the {A1, B2C1D1}
or {A2, B2C1D1} branch will stop at depth 2 since all
chargers are already searched.

• Optimal pruning: if the optimal branch under the current
depth is found to be smaller than the previously searched
one, the branch can be pruned and directly returned.
For example, at depth 2, we record the current optimal
branch as {A1, B3}, for the {A1, B2C1} branch, even the
following chargers offers optimal orientations, it still will
not be better than the current optimal, it is thus pruned.

• Greedy-based pruning: during the search processing, for
the branches at the same depth and having the same
chargers searched, the one that can not be the local
optimal will definitely not be the candidate optimal
orientation. By selecting the best branch under the same
conditions, we can prune off other branches accordingly.
For example, at depth 1, we can deduce A2 branch will
not serve as the optimal branch.

Therefore, we have obtained {A1, B3, C1D1} as the optimal
solution for the example in Fig. 5. When a new request leaves
or arrives, a new round of calculations will be conducted, and
we can dynamically control the power distribution throughout
the entire network cycle meanwhile maximizing the charging
utility. The detailed process of the dynamic power distribution
controlling algorithm is given in Algorithm 2.

IV. SIMULATION

A. Simulation Setup

We consider a 20m × 20m WRSN, with 8 directional
chargers and 12 omnidirectional sensors randomly distributed.
We set the battery capacity of each sensor b = 50J , and the
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Fig. 6. Performance comparisons.

initial residual energy re is randomly generated in [0.4b, b].
The energy consumption rate ec of each sensor ranges between
[1mJ/s, 5mJ/s]. The lifetime threshold Υl is set as 60min.
Charging angle of each directional charger is set as Φ = π/3,
and we set D = 4m, α = 40, β = 100, respectively.
The wavelength is set as λ = 0.33m according to the
commercial off-the-shelf TX91501 wireless charger produced
by Powercast [33] and the transmission power of the charger
is 3W . The rated power Pth is 20mW . We set the length
of each time slot as ∆t = 20s. In every time slot, chargers
can select whether to change their orientations. The operation
period of the network is set as 24 hours.

To evaluate the performance of our TIDE scheme, we
compare it with the following three charging algorithms. Di-
rectional Charger Scheduling (DCS) [19] selects the charging
orientations according to dominant sensor sets. It ignores the
wave interference and instead assumes the power is additive
when multiple waves encounter. Randomized Orientations
(RO) generates the orientations randomly according to the
candidate sensor sets. Nearest Facing Sensor (NFS) always
selects the nearest charger to face request sensor. Both the RO
and NFS take wave interference into consideration.

B. Performance Comparisons

Impact of number of sensors N . As shown in Fig. 6(a),
we vary N from 10 to 15, and the charging utilities of four
algorithms show an increasing trend. When more sensors are
placed, more charging requests will be launched. Our TIDE
scheme can fulfill the most requests by providing the optimal
power distribution for each request sensor. Overall, TIDE
outperforms DCS, RO and NFS by 52.87%, 126.29%, and
236.70% in terms of N , respectively.
Impact of charging power P0. As shown in Fig. 6(b), when
charging power increases, none of the other three algorithms
can maintain a continuous upward trend. This is because
these algorithms lack the capability to dynamically control
power distribution, which results in sensors located where
constructive interference occurs receiving power that may
exceed Pth and therefore unable to gain additional utility
with higher charging power. Similarly, sensors located where
destructive interference occurs may experience stronger inter-
ference effects and consequently generate less utility. Overall,
TIDE outperforms DCS, RO and NFS by 94.81%, 182.63%,
and 302.81% in terms of P0, respectively.

TABLE I
CHARGING UTILITY FOR FOUR ALGORITHMS.

TIDE DCS RO NFS

charging utility 13 9.470 5.017 4.958

Impact of battery capacity b. As shown in Fig. 6(c), all
these four algorithms show a decreased trend with a larger b,
while our TIDE always maintains the best performance. As the
battery capacity increases, the lifetime of sensors will increase,
making it more difficult to reach the lifetime threshold for
sending charging requests, resulting in a decrease in the
number of requests and a decrease in charging utility. Overall,
TIDE outperforms DCS, RO and NFS by 38.88%, 105.61%,
and 244.68% in terms of b, respectively.

Impact of lifetime threshold Υl. As shown in Fig. 6(d), the
overall charging utility yielded by four algorithms shows an
increasing trend with Υl. This phenomenon suggests that the
increment of the charging threshold will decrease the urgency
of charging requests, thereby enabling our TIDE to meet more
charging requests and produce more utility. Overall, TIDE
outperforms DCS, RO and NFS by 40.54%, 97.58%, and
185.78% in terms of Υl, respectively.

V. FIELD EXPERIMENTS

In this section, we conduct field experiments to verify the
performance of our TIDE scheme.

A. Testbed

As shown in Fig. 7, we use three TX91501 Powercast [33]
transmitters and ten rechargeable sensors to conduct the test-
bed experiment. We also employ an AP connecting to a laptop
to record the sensing data. The chargers and sensors are
deployed in a 3m × 3m square area as shown in Fig. 8. We
set D = 4m, Pth = 20mW , ∆t = 20s, respectively. The
operation period of the network is set as 12 hours. Each time
charger needs to alter the charging orientation, we rotate the
chargers to cover the selected candidate sensor sets.

B. Experimental Results

Table I shows the overall charging utility of the four
algorithms, we can see our TIDE outperforms DCS, RO, NFS
by 37.3%, 159.1% and 162.2%, respectively. This indicates our
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Fig. 7. Testbed.

Fig. 8. Field experiment.

TIDE better fulfills real-time charging requests from sensors
by controlling power distribution dynamically.

To verify the feasibility and robustness of TIDE, we conduct
the experiments for different numbers of sensors as shown in
Fig. 9(a). As the number of sensors increases, our algorithm
provides considerable power to sensors due to its ability to
dynamically control power distribution, thereby generating
more charging utility. Then, we compare four algorithms as the
lifetime threshold varies from 20min to 80min. As shown in
Fig. 9(b), with the higher lifetime threshold, the utilities follow
similar trends with those in the simulations. In conclusion, we
claim that our TIDE is robust to different networking settings
and it is feasible in real scenarios.

VI. RELATED WORK

In general, the existing work can be classified into two
categories: stationary charging [17], [18], [26] and mobile
charging [22]–[24].

In stationary charging, static chargers are deployed at fixed
locations and assigned to emit energy continuously. Yu et
al. [17] focused on the connectivity of chargers for communi-
cation needs. They designed effective algorithms with guaran-
teed approximation ratios to select the chargers’ positions and
orientations. Dai et al. [18] studied the problem of wireless
charger placement with multiple directional antennas. They
aimed to maximize the overall charging utility by determining
the chargers’ positions and the antennas’ orientations. Ma et
al. [26] considered the wave interference in the concurrent
charging scenario and they proposed a concurrent charging
scheme to take full advantage of the high power caused by
constructive interference to enhance the charging efficiency.

In mobile charging, mobile chargers (MCs) can move and
replenish energy for sensors in proximity due to their mobility.
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Fig. 9. Performance comparisons on test-bed experiments.

Yang et al. [22] concentrated on the defects of the inaccu-
rate discretization methods and imprecise charging models.
They addressed the precise charging issue in complicated
environments by designing new discretization schemes and
building a reflection model. Ren et al. [23] exploited the
neglected back lobe for mobile charging to simultaneously
minimize the number of dead sensors and maximize energy
usage efficiency. Sun et al. [24] focused on serving dynamic
nodes whose locations vary randomly and pointed out long-
short-term conflict of dynamic sensors. They developed an
online learning algorithm to iteratively adjust the charging
strategy to maximize charging utility.

Nevertheless, little attention has been paid to the gap
between energy supply and practical demand caused by fixed
power distribution. It is an important issue to control the power
distribution dynamically to serve sensors better.

VII. CONCLUSIONS

This paper focuses on the inflexibility of fixed power
distribution in static charging networks. Our main contribution
is to design a dynamic power distribution controlling scheme
to respond to real-time charging requests from sensors to
maximize the overall charging utility. Firstly, we incorporate
wave interference into the directional charging model to depict
the power distribution in a directional charging network. To
overcome the challenge of selecting a specific orientation for
each charger, we design a candidate sensor sets extraction al-
gorithm to reduce the computation complexity and the negative
impact of destructive interference. Furthermore, we propose
a neighbor set division method to narrow the calculation
scope and develop a dynamic power distribution controlling
algorithm to update the neighbor sets timely and select optimal
orientations for chargers. Finally, extensive simulations and
test-bed experiments are conducted to prove our TIDE outper-
forms other comparison algorithms by 142.62% on average.
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