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Abstract—With the rapid development of industry, vibration
equipment has become one of the most widely used components
for industrial systems. Utilizing vibration sensing and recognition
is an effective way to diagnose and understand the working con-
dition of these systems. However, the performance of traditional
video/laser-based vibration sensing and recognition solutions
varies significantly under different lighting conditions, while the
invasive approaches need to directly mounting dedicated sensors
to the target, which might pose a threat to its operating safety.
To tackle this issue, we propose RF-Vsensing, an RFID-based
contactless vibration sensing and recognition method without
attaching anything to the target device. Unlike existing methods,
RF-Vsensing can realize highly accurate non-contact vibration
sensing and recognition using commercial off-the-shelf RFID
devices. The evaluation results show that the average accuracy of
vibration can reach 96.07% and the average recognition accuracy
of clockwise and anticlockwise can reach 99.44%.

Index Terms—RFID, Contactless, Sensing, Clockwise and anti-
clockwise Recognition.

I. INTRODUCTION

The development of industry is inseparable from the normal

operation of mechanical equipment. As shown in Fig. 1,

mechanical equipment such as car engine [1], UAV [2],

motor [3], gear [4], fan [5] usually includes a rotation module.

The operation of each rotating equipment shall be maintained

within a natural frequency range. Regular monitoring of the

running status of rotating equipment can effectively reduce

equipment failures, extend equipment lifetime, so as to re-

duce maintenance cost. Therefore, it is necessary to realize

a equipment rotation state monitoring without affecting the

normal operation of the equipment. In addition, the rotation

direction is important as well. It is difficult for the equipment

to withstand the impact of rotation reversal due to incomplete

shutdown, which would not only prematurely damage the

weak parts, but reduce the execution efficiency.

In recent years, to identify the rotation state of the vibration

equipment, existing technologies mainly focus on measuring

the slip, torque, vector or other indicators of the correspond-

ing equipment. However, to obtain real-time and accurate

equipment vibration information, these technologies have to

mount special sensors [6] and high-precision photoelectric

¶Corresponding author: Die Wu.

Fig. 1. Several potential vibration applications.

tachometer [7] on the equipment. As aforementioned special

sensors are usually expensive, existing methods are inconve-

nient for pervasive deployment. Moreover, it is difficult for

some equipment to bind other auxiliary instruments during

operation. Therefore, for the monitoring of equipment working

state, it is necessary to select non-contact vibration state

identification technology to reduce the complexity of work

and avoid the loss caused by stopping the equipment.

Nowadays, Radio Frequency IDentification (RFID) has at-

tracted considerable attention. The existing RFID-based de-

vice sensing exploration involves various aspects, such as

equipment health monitoring [8], high-speed rotation moni-

toring [9], [10], rotor eccentricity monitoring [11], position

detection [12], etc. The success of these studies fully proves

the advantages of RFID in the field of sensing and monitoring.

Low-cost deployment and convenient operation have laid a

solid foundation for the development of RFID. Based on this,

the problem also arises: Can we use RFID-based technology to
effectively monitor the state of vibration equipment? Through

in-depth analysis, we find that it is challenging to realize con-

tactless sensing and state recognition of vibration equipment

based on RFID devices. The reasons are as follows:

• The most simplified system deployment. Though ex-

isting multi-tag based approaches could achieve sounds

performance, sophisticated deployment is needed when
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Fig. 2. Different types of vibration equipment.

tags are deployed. Therefore, how to reduce the number

of tag deployment, so as to reduce the deployment cost

and realize a non-contact sensing recognition is the first

challenge.

• High precision frequency identification. In practical

scenarios, due to the influence of various uncertain fac-

tors, the performance of traditional denoising pattern

recognition is not good enough, which results in a low

frequency identification accuracy. If the signal acquisition

is carried out in a non-contact way, the environment,

equipment and personnel will interfere with the tag’s

backscattered signal. Thus, how to use the weak signal

to accurately identify the frequency of vibration device

becomes a problem.

• Real-time requirements. From the perspective of re-

ceived signal, there is very little difference between the

clockwise and anti-clockwise rotation. In practice, we

need to recognize clockwise and anti-clockwise as soon

as possible so as to take measures to avoid further

damage to the equipment. Therefore, how to recognize

the rotation state in real time is the third challenge.

In response to the above challenges, we take the vibration

equipment motors (as shown in Fig. 2) as example, and

propose RF-Vsensing, a single RFID tag based contactless

vibration sensing and status recognition method. In RF-

Vsensing, the deployment is very simple, where we just need

to place a single antenna and a single RFID tag in the

vicinity of the device, and use the received signal information

to perform sensing and recognition. More in detail, as the

phase information of the tag is timing information, we can

first remove the DC component from the phase information

of the tag and realize the finite impulse response (FIR)

filter through fast Fourier transform (FFT) to identify the

rotation frequency of the target equipment. Secondly, we take

advantage of Markov transition fields (MTF) to transform the

phase signal into image features, and utilize convolutional

neural network (CNN) to perform rotation state recognition.

Compared with traditional machine learning method, deep

learning has the advantages in image recognition, especially

fine-grained feature recognition. Thirdly, to achieve real-time

recognition, we propose a simplified Vgg network structure,

and the evaluation result show that the model parameters and

training time are greatly reduced, and the generalization ability

of the model is improved.

path loss
multipath loss

shadow effect

Tag

Vibration device Reader antenna

Obstacle

Fig. 3. Vibration sensing and recognition model.

To sum up, the main contributions of this paper are as

follows:

• Our approach is a contactless approach that we can realize

real-time monitoring without mount anything to the target

equipment, i.e., we only need to place a single RFID tag

and single antenna in the vicinity of the target device.

• We adopt the feature recognition model of tag phase

signal based on Markov transition method. The model can

transform the phase information of the tag into a Markov

transition diagram, and realize the real-time monitoring

of anomaly positive and negative identification.

• RF-Vsensing can realize the rotation identification of

various vibration equipment. We use commercial readers

and tags to simplify scenario deployment. The average

accuracy of rotation frequency recognition, clockwise

and anti-clockwise recognition are 96.07% and 99.44%

respectively. All these verify the excellent performance

of the system.

II. PRELIMINARIES

A. Vibration sensing model

In RFID system, the tag’s phase information will be influ-

enced when the nearby rotation equipment is operating. In our

work, the vibration sensing model is shown in the Fig. 3. It

consist of an RFID tag, an RFID reader antenna, and a target

vibration device. In practice, the phase information is often

mixed with multipath loss, path loss, and shadow effects.

In the process of transmission, the vibration signal of the

motor and other equipment will be reflected through the actual

environment and obstacles. The uncontrollable changes in the

length of these transmission paths will cause the differences

in the receiving time, phase and other parameters of the

signals in each path. This difference will make the phase

signal superimpose, and then produce the common multipath

fading phenomenon. Among these signals, RSSI and Doppler

are sensitive to the change of relative position. In the case of

non-contact between the tag and the equipment, the vibration

frequency of the equipment can be identified by the in-depth

processing of the tag phase information.
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B. Non-contact clockwise and anti-clockwise identification

The signal information collected by commercial readers

includes RSSI and Doppler which are easily affected by

the environment. We can only select the phase information

to identify and analyze the positive and negative rotation.

However, due to the unique property of phase angle difference

π between positive and negative, we have extracted the key

to solve the problem. We transform the phase information

of tags into images of Markov transition field, and then use

convolution neural network model in deep learning to identify

the differences of images in Markov field.

Convolution neural network with deep learning can be

regarded as a combination of a series of processing. The

initial combination of convolution layer and sampling layer has

different functions. The convolution layer contains multiple

convolution cores which are equivalent to multiple filters and

can output multiple corresponding feature maps. Each image

will also be the output unit, which is output by convolution

layer, and then the obtained characteristic image can be

transferred by nonlinear activation function. In this way, by

combining the features of adjacent positions of different layers,

the detected local features can be formed. The sampling layer

can integrate the features. Even small features can be input

into the orientation of the feature map by sampling, which

greatly reduces the size of the feature map.

III. SYSTEM DESIGN

A. Signal acquisition

For ease of deployment, we use a commercial off-the-shelf

reader to extract the tag signal. Commercial reader do not

provide the underlying data interface, especially the physical

layer data that tags communicate with readers. The tag re-

flection signal received by commercial reader only contains

the following data: received signal strength indication, phase

angle value, Doppler shift data. The value of these reflected

signals will change with the change of tag position, moving

speed and surrounding environment.

In order to improve the weak electromagnetic signals that

the reader receives from the tag as much as possible, the

system uses a circularly polarized antenna. The antenna has

large volume and high gain, which can make up for the

attenuation of high strength signal caused by distance, and

minimize the loss of signal energy received by the tag and the

reader. Wherein, the power received by the tag and the power

received by the reader are expressed as follows:

PR tag = PT readerGreaderGtagα(
λ

4πd
)2 (1)

PR reader = βPT readerG
2
readerG

2
tagα

2(
λ

4πd
)4 (2)

In the above formula, β denotes the utilization rate of

the energy emitted by the reader, PT reader is the power

transmitted by the reader, Greader is the gain of the reader

antenna, Gtag is the gain of the tag, α is the attenuation

(a) Remove DC component

(b) Moving average method

Fig. 4. Comparison of denoising methods.

coefficient of the propagation channel between the reader and

the tag, λ is the radio electromagnetic wave length, and d is

the communication distance between tag and reader.

B. Signal denoising

In the process of signal transmission and acquisition, the

interference introduced by the external environment and the

noise produced by itself will have a significant influence on the

received signal. Even a small noise will have a huge impact on

the analysis results. Therefore, we should first consider how to

purify the data, that is, to remove the noise from the received

signal.

We compare the DC component denoising and moving aver-

age denoising methods. The DC component of the signal is the

average value of the signal, which is a constant independent

of time. The DC component of the signal can be expressed as

follows:

fDC = lim
T→∞

1

2T

∫ T

−T

f(t)dt (3)

The moving average method gives weight to the signal

information, with large coefficient given to the recent data

and small coefficient given to the long-term data, so as

to eliminate the variable factors of the signal information.

Before performing signal denosing, the original phase signal

is smoothed to reduce the impact of data mutation. In order to

obtain better actual denoising effect, the smoothing factor of

the moving average method was set as 0.3 in the experimental

setting. During this period, we found that if the value is
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too large, the key characteristic values of the signal will be

lost, and if the value is too small, the smoothness will be

incomplete. In our approach, we select the 0.3 as the value of

smoothing factor.

By comprehensively comparing Fig. 4(a) (DC component

removal method) and Fig. 4(b) (Moving average method), we

find that the DC component removal method retains the tag

phase information, and the phase curve is smoother as well,

moreover, the denoised curve has less jitter. Therefore, our

approach adopt DC component removal method to perform

signal denoise.

C. Vibration frequency sensing

The sampling rate of commercial readers is low, usually

up to 40 Hz. According to Nyquist’s sampling theorem and

practical engineering results, we choose a Finite Impulse

Response (FIR) filter implemented by FFT for filtering and

vibration frequency identification. FIR low-pass filter can

retain the phase frequency characteristics on the basis of

ensuring any amplitude frequency characteristics, and the unit

sampling response is limited, so the system can maintain a

relatively stable effect. The phase information of tag is easy to

be disturbed by environmental noise, so a stable identification

system is particularly important for vibration identification of

equipment in complex environment.

FIR filter is a kind of approximation based on the frequency

characteristics of ideal filter. It adopts the method of window

function and sampling response of unit frequency to approach

continuously. Assuming that the cut-off frequency of low-pass

digital filter is wcut−off and the group delay is α, the unit

impulse of filter should be expressed as follows:

hd(n) =
1

2π

∫ π

−π

Hd(e
jw)ejwdw (4)

Further derivation of the above formula shows that:

hd(n) =
sin(wc(n− a))

π(n− a)
(5)

The unit impulse response of the ideal filter is infinite, but in

practical application, the length of the low-pass filter is finite,

so it is necessary to choose a better Hanning window function

to adjust hd(n). According to the function selection, the

system achieves high precision vibration frequency perception.

D. Clockwise and anti-clockwise recognition

In our approach, three signal indicators received by com-

mercial readers are analyzed. RSSI value is sensitive to the

change of location and is easily affected by the environment.

Slight changes in Doppler values are difficult for commercial

reader to pick up. For this reason, we carried out a deep

excavation of tag phase information. The actual difference

between the forward rotation and reverse rotation of the

equipment is analyzed from the perspective of phase, and

phase signal is actually belong to one-dimensional time series

signal. Therefore, the phase information of tags is abstracted

as a time series classification problem.

(a) Clockwise rotation (b) Anti-clockwise rotation

Fig. 5. Markov Transition Field.

The tag phase information received by the reader antenna

is a random variable and is arranged in chronological order.

The distribution characteristic at time t+ 1 has nothing to do

with the random variables before time t, which conforms to

the Markov property.

Suppose the time series T = {t1, t2, . . . , tN}, we divide

the range into Q series, each ti in the time series informa-

tion is mapped to the corresponding qi, through continuous

mapping, we can get a matrix Q∗Q of W , wij represents the

generalization that the j element in the sequence is followed

by the i element in the sequence, that is, wij = P (at ∈
qi |at−1 ∈ qj), and satisfies

∑Q
j=1 wij = 1. So we can get the

matrix W=(wij)1≤i,j≤Q. Let the transition matrix M , where

mij denotes the probability of the transition from Z to Q,

where V = 1 Let the transition matrix M , where mij denotes

the probability P (qi → qj) of the transition from i to j in the

sequence, where
∑

1≤j≤Q mij = 1.

The random field contains two important characteristics:

position and phase space. After the phase space is assigned to

each position according to the random distribution, the value

in any position is only related to the adjacent position, and

has nothing to do with other positions. Using this feature, we

transform the tag phase angle information in accordance with

time series into Markov Transition Field (MTF). We take the

MTF of normal and reverse rotation as an example (as shown

in Fig. 5).

From Fig. 5(a) and Fig. 5(b), it is difficult to extract the

characteristic information of the image. Deep neural net-

work can learn input sample data layer by layer and extract

data features from the details of image information. Among

them, Convolutional Neural Networks (CNN) is widely used

in the field of image recognition. CNN can overcome the

shortcomings of traditional signal processing, especially for

the recognition of small features. The core of convolution

neural network is to extract features through larger convolution

kernel. For example, alexnet, resnet18, etc. The larger the

size of convolution kernel, the stronger the ability to explore

information features. In this way, more parameters will be in-

troduced, and the computational complexity will be improved.

VGG network uses 3 × 3 convolution kernels in each block

instead of large convolution kernels, and uses three 3 × 3
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Fig. 6. Vgg16 network model.

Fig. 7. Simplified VGG model.

convolution kernels to be equivalent to the receptive field of

7× 7 convolution kernels, but the parameters are reduced by

nearly half.

The original Vgg model can have as many as 16 layers, 13

convolution layers and 3 fully connected layers, and can output

1000 classifications. The specific parameters are as follows:

the size of convolution kernel is 3 × 3, the step size is 1, and

the padding of convolution is 2. The size of pooling layer is 2

× 2, and the step size is 2. Each layer contains 4096 neurons.

Softmax layer is used in the output layer and ReLU is used in

the activation function. The Vgg model as depicted in Fig. 6.

We use image data generator to preprocess the image. The

rotated image is not clipped to avoid errors due to compres-

sion. The original image is 270 × 270 pixels. After loading,

the image is normalized, and the pixel value is reduced to

between 0 and 1, which is conducive to the convergence of

the model and avoids the “death” of neurons. In this paper,

the image inversion is mainly composed of two parts: positive

phase and reverse phase. In order to improve the computing

speed and reduce the complexity of the model, we simplify

the VGG model step by step.

We summarize the proposed model. Firstly, the input data

is 270 × 270 training image. After a 3 × 3 convolution kernel

and 32 filters, we output 268 × 268 × 32 dimensional matrix.

Then, after a 2 × 2 maximum pooling layer, we output 134 ×
134 × 32 dimensional data. After a series of feature extraction,

(a) Overall

(b) Experiment setup

Fig. 8. Experiment scene and setup.

we flatten the matrix through the Flatten layer and eventually

input it into a model of 32 neurons, achieving the output

of Softmax activating the two classifications (as depicted in

Fig. 7).

IV. SYSTEM IMPLEMENTATION

Hardware: In the experiment, we use the Impinj Speedway

R420 reader, which adopts the EPC Gen2 standard, and

its working frequency band is between 920 and 925 MHz.

It selects Max throughput in the working mode, so that

the measured value can reach the maximum throughput. In

order to maximize the number of observed samples, llrp

protocol tags are used to communicate with readers. We use

RFID directional antenna. Finally, we also use single-chip
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(d) Effect of blockage

Fig. 9. Comparison of multiple factors.

microcomputer, tachometer, in order to control the speed and

direction of the motor. At the same time, we can also measure

and display the motor speed. The reader can receive the

RSSI, Phase, Doppler and other information of the tag, and

synchronously transmit it to the laptop for processing and

monitoring.

Software: In this experiment, we use the embedded Impinj

LLRP toolkit to communicate with the reader. Impinj reader

improves this protocol to support phase reading report. For

the client software, we use C#, and then realize the network

connection. In the overall experiment, we are equipped with

Intel i5-8265u CPU and 8G RAM Lenovo PC, which makes

the software implementation compatible with LLRP toolkit,

and simply and directly obtain the tag information from the

reader.

Experiment scene: These devices take the frequency data

converted by manual adjustment of motor speed as the basis to

carry out a series of explorations. The instrument deployment

includes R420 reader, directional antenna, tag, motor, MCU,

tachometer, Lenovo PC and other equipment (as shown in

Fig. 8). These devices can realize real-time vibration sensing

and recognition. Through actual scene deployment, they not

only innovate and intelligentize the traditional mode, but also

lay a foundation for realizing the efficient recognition of

industrial equipment vibration sensing.

Implementation: In this experiment, the maximum sam-

pling rate that can be realized is 80Hz, but in this case, the

placement distance between the tag and the reader is too small,

which is inconsistent with the reality. In order to be more in

line with the reality, we chose a sampling rate of 60Hz with a

better effect for the experiment. In the process of single-chip

adjusting motor speed, the maximum can reach 3600RPM per

minute.

V. PERFORMANCE EVALUATION

Tag orientation: In the experiment, we compare the tag

with the motor in forward direction, 45 degrees and side

direction, and observe the accuracy of tag recognition in

three different directions. Fig. 9(a) shows the effect of tag

orientation on the accuracy of frequency recognition. It can

be seen from this that if the tag and the reader are in positive

correspondence, that is, the tag is placed sideways with the

motor, the accuracy of frequency identification is the highest.

Influence of distance between tag and motor: We change

the distance between the tag and the reader from 5cm to

25cm. From Fig. 9(b), we can see that when the distance

between the tag and the motor is too large, the reflected signal

becomes weak and the recognition accuracy is reduced. In

order to further improve the experimental accuracy and sensing

range, we can select a more effective directional antenna to

concentrate energy.

Influence of distance between tag and antenna: We

change the distance between the tag and the antenna from 15

to 35 cm. Fig. 9(c) depicts that as the distance between the tag

and the antenna increases, the error increases correspondingly.

In order to achieve the best recognition performance, we keep

the distance between the antenna and the tag at about 15cm

to improve the recognition accuracy.

Effect of blockage: In this experiment, we performed

relevant operations in the challenging NLOS (non-line-of-

sight), such as: Objects of different materials (empty water

cup, full water cup, book, paper, cardboard) are used to

block the signal transmission between the tag and the reader

respectively. During the experiment, attention should be paid

to keeping the distance between the tag, motor and antenna

constant. Under this condition, it can be clearly seen from

the Fig. 9(d) that blocking has a great impact on the recogni-

tion accuracy of frequency and clockwise and anti-clockwise

rotation, which greatly reduces the accuracy of frequency

recognition. However, it can be seen from the figure that the

recognition accuracy is still around 0.8, and the error is within

a certain range, which provides a great possibility for the

deployment in the specific experimental environment.

Identification accuracy of different vibration frequen-
cies: During the experiments, we adjust the frequency of the

vibration equipment through the single chip microcomputer,

process the extracted data with filters, and test its final per-

ception performance. Fig. 10 describes the sensing accuracy

at different frequencies (taking 8Hz to 17Hz as an example).

It can be seen from the figure that the best sensing accuracy

can be achieved at 16Hz and the average accuracy has reached

96.07% at different frequencies.

Clockwise and anticlockwise recognition accuracy of
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different network models: In the experiment, machine learn-

ing and deep learning methods were respectively used to test

performance (SVM, Alexnet, Resnet, Vgg16, SVgg). As can

be seen from Fig. 11, the recognition accuracy of traditional

SVM is low, while the accuracy of the improved Deep learning

SVgg model is high, with an average accuracy of 99.44%.

Other factors: We still conduct experiments and identify

frequencies in the multipath environment, but it can be clearly

found that under the condition of strong multipath, phase

values overlap with each other and interfere with each other,

resulting in original signal distortion and even errors, thus

greatly reducing the accuracy of frequency recognition.

Challenging Scenarios: In order to assess the maximum

universality of the system, more challenging scenarios need to

be experimented in later studies. Now we preliminarily set the

subsequent experiment scene in the vibration equipment such

as fan, engine and gyro. The use of tags, antennas and other

equipment for real-time monitoring of frequency and rotation

direction, effectively maximize the utilization of the system,

convenient for production and life.

VI. RELATED WORK

Special sensor-based methods: In traditional contact vi-

bration monitoring and positive and negative rotation iden-

tification, the use of sensors has attracted a lot of attention

of researchers. Liu et. al uses Kinect sensor V2 and artificial

neural network to measure vibration frequency [13]. Bhardwaj

et. al proposed a laser sensor [14] based on self-mixing

optical feedback interference technology to measure micro-

harmonic vibration. Spirin et. al proposed that a semiconductor

laser could replace the standard reference oscillator of a

coherent reflectometer in a distributed fiber optic vibration

sensor system [15] to measure the vibration frequency. Li et.

al designed a low-frequency vibration monitoring system [16]

in which the grating sensor was installed in a specific device

to obtain the vibration signal of the hydraulic generator.

Video image-based methods: Aiming at the problem that

traditional vision cannot extract high frequency vibration sig-

nal, Ferrer et. al further measured the vibration frequency by

using camera with high acquisition rate, image acquisition

and multistage threshold segmentation technology [17]. Wang

et. al [18] proposed that different vibration spatial informa-

tion can be recorded in frame images by RGB-D camera

and can be combined with depth to monitor low-frequency

vibration. Gorjup et. al proposed a full-field 3D measurement

of high-frequency vibration using a monochrome camera of

still frame [19], which effectively reduced the recognition and

processing time. Jiang et. al proposed a vision-based vibration

source capture method to extract vibration image regions in

high frame rate videos using pixel-level digital filters [20].

Laser measuring equipment-based methods: This method

has the advantages of wide range, high accuracy and non-

contact, etc., not only has very high application value, but also

has attracted widespread attention in the industry. Yamaguchi

et. al proposed a vibration measurement system [21] of pulsed

optical fiber Bragg Grating, which is similar to pulse sequence

to separate and monitor reflected signals, so as to achieve

the purpose of multi-point real-time vibration measurement.

Bhardwaj et.al proposed a new method [22] for solving SM-

OFI signals using multi-objective composite mutation genetic

algorithm, which achieved the purpose of simultaneous mea-

surement of absolute distance and frequency of vibration.

Time-frequency domain analysis-based methods:The

fault information in vibration signal is often presented in weak

frequency band, and frequency band identification method can

be used to enhance the weak fault information in vibration

signal, so researchers often transform the signal into mon-

itoring in time-frequency domain. Pan et. al proposed the

inversion of the optimal model parameters in the time domain

or frequency domain and the combination of Bayes to achieve

the purpose of fracture property monitoring [23]. Schmidt

et. al proposed a frequency band identification method based

on optimization [24], which enabled the system not only to

enhance the ability of fault information, but to be used for

automatic fault detection under time-varying conditions.

RFID-based methods: RFID technology has achieved real-
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time positioning tracking [25] [26], gesture recognition [27],

drop speed detection [28], industrial health awareness [29]

[30], etc. Moreover, Tagbeat [9] mounts RFID tags on the

target device to sense vibration frequency, and TagSound [31]

also innovatively uses the signal changes caused by tags to

detect vibration frequency.

VII. CONCLUSION

In this paper, we propose RF-VSensing, a single tag vibra-

tion sensing and state recognition system based on RFID. The

system not only realizes non-contact vibration frequency sens-

ing, but also realizes real-time clockwise and anti-clockwise

rotation recognition. The evaluation results show that the

average precision of vibration sensing and recognition can

reach 96.07% and 99.44% respectively, which effectively

breaks the traditional general mode. Based on this, we believe

that RF-VSensing will be very suitable for sensing and state

recognition of multiple types of vibration equipment in the

future.
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