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Abstract. Incomplete hybrid information systems (IHISs) contain
hybrid data (e.g., categorical data, numerical data) and incomplete data.
With the development of big data, IHISs widely exist in various practical
applications. Due to the heterogeneity of hybrid data and the complex
semantics of incomplete data, effectively processing the IHIS has become
a significant challenge. The established indiscernibility relations of the
existing studies for dealing with IHIS over-amplify the uncertainty of
missing values, which may achieve unsatisfactory results. In this paper,
we propose an approximate supplement-based neighborhood rough set
model (AS-NRSM) to deal with the data of IHISs. Specifically, we pro-
pose a method to approximate supplement missing values with known
values or constructed interval values, and the original IHIS is becoming
the constructed IHIS*. Then, we formulate a novel similarity function to
construct the improved neighborhood tolerance relation and the corre-
sponding neighborhood tolerance classes. Finally, we design two exper-
iments on 5 UCI data sets by introducing three performance metrics.
Experimental results illustrate that the proposed AS-NRSM has higher
classification performance than the two representative models.

Keywords: Incomplete data · Hybrid data · Neighborhood rough
sets · Incomplete hybrid information systems

1 Introduction

With the fast development of the information era, more and more data in the
real world show heterogeneous and incomplete. For example, the medical records
contain categorical data, e.g., blood type (O, A, B, AB), gender (Male, Female)
and marital status (Married, Unmarried), and numerical data, e.g., blood lipid
(mmol/L), body temperature (◦C) and height (cm). In addition, due to some
unpredictable factors like human omission or equipment failure, missing data
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will occur occasionally. At present, in the fields of data mining and knowledge
discovery, methods of efficiently processing these heterogeneous and incomplete
data have become a research hotspot.

Rough set theory is an effective tool for addressing vague and uncertain issues,
and has been used successfully in many realms [6,8,12,19–21]. The classical
rough set model can only deal with complete and categorical data in information
systems (ISs) based on equivalence relation. ISs with incomplete and hybrid data
are called incomplete hybrid information systems (IHISs), which exist widely in
practical applications. Thus, many investigations have extended the rough set
model to process the information systems with hybrid data [1,3,11,14,18] and
incomplete data [9,10,13,15] separately.

Recently, there has been an increasing interest in simultaneously consider-
ing hybrid data and incomplete data [2,5,16,22,23]. Huang et al. [5] given two
pseudo-distance functions according to two semantics of missing value (i.e., “lost
value” and “do not care”) in IHISs. For only one semantic of missing value,
namely, “lost value”, Ge et al. [2] proposed an improved neighborhood rough
set model (NRSM) in an IHIS to process the missing data. Zhang et al. [22]
proposed an attribute reduction algorithm in IHIS by introducing the Dempster-
Shafer evidence theory in the distance function. Wang et al. [16] proposed the
decision-theoretic rough set model in IHIS with image and employed it in a med-
ical diagnosis example. However, in these models, missing values are generally
considered to be equal to all known values in the corresponding domain. Intu-
itively, the lost value should be similar to part of values in the corresponding
domain, rather than be equal to all known values. Therefore, the existing models
amplify the uncertainty of lost values, which may acquire unreasonable classifi-
cation results. The specific analysis and statement of the problem are presented
in Sect. 2.

To better describe the uncertainty of lost values and improve the classi-
fication performance in IHIS, we propose an Approximate Supplement-based
Neighborhood Rough Set Model (AS-NRSM). Considering the heterogeneity of
categorical and numerical data, we firstly approximately supplement lost values
with known categorical or interval values, to avoid the uncertainty amplification
caused by the above-mentioned models. Then the IHIS is becoming a constructed
IHIS* with only one semantic (i.e., “do not care”). In the constructed IHIS*, we
define the corresponding similarity function to simultaneously deal with three
data types: categorical, numerical, and the replaced interval values. Then, we
construct the AS-NRSM based on the similarity function. Finally, two experi-
ments are designed and implemented to verify the effectiveness of the proposed
AS-NRSM.

The main contributions are presented as follows. (1) To describe the uncer-
tainty of missing values as accurately as possible, we propose a method of approx-
imate supplement for the lost values in the original IHIS. (2) To address three
types of data in the constructed IHIS*, we define a novel similarity function
to measure the similarity between objects. (3) We design an algorithm of AS-
NRSM and introduce three performance metrics into the AS-NRSM to verify the



AS-NRSM in Incomplete Hybrid Information Systems 283

performance of the proposed model. This paper is organized as follows. In Sect. 2,
some basic notions of IHIS are reviewed and a specific analysis of the existing mod-
els is given. In Sect. 3, we give a method of approximating supplements and discuss
the similarity function in IHIS*. The AS-NRSM will be established eventually. In
Sect. 4, several experiments are carried out on 5 UCI data sets to compare the
performance of the proposed method and two existing methods. Finally, the con-
clusion of this paper and the possible future works are presented in Sect. 5.

2 Preliminaries

In this section, we briefly review some concepts about IHIS. Then, we shortly
analyze the irrationality of two existing NRSMs when processing some cases in
IHIS.

2.1 Incomplete Hybrid Information Systems (IHISs)

An IHIS can be denoted as Ω = (U,A, V, f, ?, ∗), where A = AC∪AN , AC∩AN =
∅, and A is a non-empty finite set of attribute, AC and AN are the categorical
and numerical attribute sets, respectively. “?” and “*” denote two semantics of
missing values, namely, “lost value” and “do not care”.

Table 1. Ω = (U,A, V, f, ?, ∗)

UUU a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

x1 S A 0.6 0.8 0.9

x2 M * * 0.2 0.5

x3 * C 0.3 0.2 0.6

x4 ? B ? 0.2 ?

x5 S ? 0.1 ? 0.1

x6 M ? ? ? ?

x7 M ? ? ? ?

x8 M * * 0.9 0.1

Example 1. We use Table 1 to illustrate an IHIS, where U = {x1, · · · , x8}, A =
{a1, · · · , a5}. For categorical attribute set AC = {a1, a2}, Va1 = {S,M} and
Va2 = {A,B,C}, we have some objects with missing values, e.g., f(x3, a1) = ∗,
f(x4, a1) =?. For numerical attribute set AN = {a3, a4, a5}, Va3 , Va4 , Va5 ∈ [0, 1],
there are some missing values, e.g., f(x2, a3) = ∗, f(x4, a3) =?.

To cope with the numerical data, the theory of neighborhood rough sets (NRSs)
is introduced [1,4,17]. For numerical attribute AN , through a neighborhood
radius δ ∈ [0, 1]. The neighborhood relation N δ

AN is defined by:

N δ
AN = {(x, y) ∈ U2 | ∀a ∈ AN , da(x, y) ≤ δ}, (1)
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where da(x, y) is the distance of x and y on the attribute a ∈ AN . For any x ∈ U ,
the neighborhood class N δ

AN (x) is defined by:

N δ
AN (x) = {(x, y) ∈ U2 | ∀a ∈ AN , (x, y) ∈ N δ

AN }. (2)

In IHIS, Huang et al. [5] proposed Three-Way Neighborhood Decision Model
(TWNDM). Ge et al. [2] constructed an Improved Neighborhood Rough Set
Model (INRSM). The lost value can be equivalent to any one of the known values
in the corresponding domain in TWNDM and INRSM. The specific analysis of
the two models are given in Example 2.

Example 2. Consider the IHIS in Example 1, we assume the neighborhood radius
δ = 0.2, the neighborhood classes N δ

A(x) are respectively constructed based on
TWNDM [5] and INRSM [2] as Table 2.

Table 2. Neighborhood classes

Method TWNDM INRSM

Nδ
A(x1) {x1} {x1, x6, x7}

Nδ
A(x2) {x2, x3, x5, x6, x7} {x2, x3, x5, x6, x7}

Nδ
A(x3) {x2, x3, x6, x7} {x2, x3, x4, x5, x6, x7}

Nδ
A(x4) {x2,x4x4x4,x5x5x5, x6, x7} {x2, x3,x4x4x4,x5x5x5, x6, x7, x8}

Nδ
A(x5) {x4x4x4,x5x5x5} {x3,x4x4x4,x5x5x5, x6, x7, x8}

Nδ
A(x6) {x2, x3, x5,x6x6x6,x7x7x7, x8} {x1, x2, x3, x4, x5,x6x6x6,x7x7x7, x8}

Nδ
A(x7) {x2, x3, x5,x6x6x6,x7x7x7, x8} {x1, x2, x3, x4, x5,x6x6x6,x7x7x7, x8}

Nδ
A(x8) {x6, x7, x8} {x3, x4, x6, x7, x8}

We note that TWNDM and INRSM are not very reasonable when dealing
with the following two special cases.

(1) The lost values of two objects always alternate. As shown in Table 1, for
∀a ∈ A, objects x4 and x5 always satisfy two conditions: (1) if f(x4, a) (=?
then f(x5, a) =?, (2) if f(x5, a) (=? then f(x4, a) =?. Intuitively, objects x4

and x5 are unlikely to be similar. Hence, it is unreasonable to classify x4 and
x5 into the same neighborhood class. However, by TWNDM and INRSM,
we have x4 ∈ N δ

A(x5) and x5 ∈ N δ
A(x4).

(2) If two objects have the same or similar known values under very few
attributes, and the rest values are all lost. As shown in Table 1, objects
x6 and x7 have only one known value in a1, and the rest of their values
are all lost values. The possibility that x6 and x7 to be similar is very low.
Therefore, it’s unreasonable to classify x6 and x7 into the same neighbor-
hood class. Still, we have x6 ∈ N δ

A(x7) and x7 ∈ N δ
A(x6) by TWNDM and

INRSM.
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Herein, the lost value is assumed to be equivalent to all known values in
the corresponding domain, which increase the uncertainty of the lost value, and
further leads to unreasonable classification results. This problem has been expli-
cated and shown in Example 1 and 2. In the following, we propose an approxi-
mate supplement method for solving this problem.

3 Approximate Supplement-Based NRSM
3.1 Approximate Supplement in IHIS

In this subsection, we propose the method of approximate supplement in IHIS.
Let x be an object with the lost value “?” in IHIS. Then the lost value will be
approximately supplemented by the known categorical value or a constructed
interval value.

In an IHIS, ∀a ∈ AN , let V †
a = {v1a, v2a, v3a, · · · , vna} be a known value set of

attribute a, and n = |V †
a | be the number of known values in attribute a. For any

a ∈ AN , we have the standard deviation in attribute a:

Stda =

√∑n
i=1(via − AVGa)2

n
, (3)

where AVGa is the average value of V †
a , i.e., AVGa =

∑n
i=1 v

i
a/n.

δa =
Stda

λ
, (4)

where λ is a parameter for the neighborhood radius.
Definition 1. Suppose Ω = (U,A, V, f, ∗, ?) is an IHIS, A = AC ∪AN . For any
x, y ∈ U , the distance function in the categorical attribute a ∈ AC is defined by

da(x, y) =






0, x = y ∨ f(x, a) = f(y, a);
0, f(x, a) = ∗ ∨ f(y, a) = ∗;
0, f(x, a) =? ∨ f(y, a) =?;
1, otherwise.

(5)

And the distance function under the numerical attribute a ∈ AN is defined by

da(x, y) =






0, x = y ∨ f(x, a) = ∗ ∨ f(y, a) = ∗;
δa, (f(x, a) =? ∧ f(y, a) ∈ V †

a )
∨(f(x, a) ∈ V †

a ∧ f(y, a) =?)
∨(f(x, a) =? ∧ f(y, a) =?);

|f(x,a)−f(y,a)|
|max(a)−min(a)| , otherwise,

(6)

where max(a) and min(a) are the maximum and minimum values in attribute
a.

In Eq. (6), when two objects have a lost value “?” or a do not care value
“*”, the distance between them is no longer considered to be 0, but is considered
to be δa. Intuitively, two objects have a slim probability to be equal under the
numerical attribute in these cases. Therefore, the neighborhood radius δa is
introduced.
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Definition 2. Let Ω = (U,A, V, f, ∗, ?) be an IHIS. The distance function under
the attribute set A is defined as follows:

dA(x, y) =
∑|A|

k=1 dak(x, y)
|A| , (7)

where | · | denotes the cardinality of a set.

Definition 3. Let Ω = (U,A, V, f, ∗, ?) be an IHIS, for any a ∈ A, we have

Xc(a) = {x|x ∈ U, f(x, a) (= ∗ ∧ f(x, a) (=?}, (8)

where the complete class Xc(a) denotes the set of all objects with known values
in attribute a.

For any x ∈ U , we can easily find an object from Xc(a) which is the most
similar to x, i.e.,

sim(x) = {y ∈ Xc(a) | min(dA(x, y))}, (9)

where min(dA(·)) means the minimal distance under the attribute set A. When
f(x, a) =? and a ∈ AC , the known categorical value of the object which is the
most similar to x can be used to supplement the “lost value”, i.e.,

f∗(x, a) = f(sim(x), a). (10)

When f(x, a) =? and a ∈ AN , a constructed interval value is used to replace the
“lost value”, i.e.,

f∗(x, a) = [max(0, f(sim(x), a) − δa),min(f(sim(x), a) + δa), 1], (11)

where f∗(x, a) ∈ [0, 1] when a ∈ AN . By approximately supplementing the lost
value “?”, we can maintain the uncertainty of the lost value “?” to some extent.

Example 3. We continue with the IHIS in Example 1 and assume λ = 2.
For all of the “lost value” in IHIS, such as f(x4, a1) =? and f(x6, a3) =?,
we have sim(x4) = x2 and sim(x6) = x3, according to Eqs. (7), (8) and
(9). Therefore, we can obtain f∗(x4, a1) = f(x2, a1) = [M ][M ][M ] and f∗(x6, a3) =
[f(x3, a3) − δa3 , f(x3, a3) + δa3 ] = [0.197, 0.403][0.197, 0.403][0.197, 0.403] to instead of “?”, respectively,
according to Eqs. (10) and (11). Similarly, we can approximately supplement all
of the “lost value” in IHIS to get a constructed IHIS* as shown in Table 3.

3.2 Construction of AS-NRSM in IHIS*

The constructed IHIS* contains four types of data: (1) the categorical attribute
values; (2) the crisp value under the numerical attribute; (3) the “do not
care” value, i.e., “*”; (4) the supplemented interval value under the numeri-
cal attribute. In this subsection, a novel similarity function is given for dealing
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Table 3. A constructed IHIS*

UUU a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

x1 S A 0.6 0.8 0.9

x2 M * * 0.2 0.5

x3 * C 0.3 0.2 0.6

x4 [M] B [0, 0.203][0, 0.203][0, 0.203] 0.2 [0.346, 0.654][0.346, 0.654][0.346, 0.654]

x5 S [B] 0.1 [0.04, 0.36][0.04, 0.36][0.04, 0.36] 0.1

x6 M [B] [0.197, 0.403][0.197, 0.403][0.197, 0.403] [0.04, 0.36][0.04, 0.36][0.04, 0.36] [0.346, 0.654][0.346, 0.654][0.346, 0.654]

x7 M [C] [0.197, 0.403][0.197, 0.403][0.197, 0.403] [0.74, 1][0.74, 1][0.74, 1] [0, 0.254][0, 0.254][0, 0.254]

x8 M * * 0.9 0.1

with three types of data in the constructed IHIS*, i.e., (1), (2) and (4). Moreover,
considering (3) in IHIS*, we would discuss the neighborhood tolerance relation
and neighborhood tolerance classes based on the defined similarity function.
Consequently, we propose AS-NRSM in the constructed IHIS*.

Considering the supplemented values in categorical attributes are known cat-
egorical values, and in numerical attributes, they are interval values within a
width of 2δ, we proposed the following similarity function.

Definition 4. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, x, y ∈ U , the
similarity function under attribute a ∈ AC ∪ AN is defined by

S∗
a(x, y) =






1, a ∈ AC ∧ f(x, a) = f(y, a);
0, a ∈ AC ∧ f(x, a) (= f(y, a);
1, a ∈ AN ∧ |f(x, a) − f(y, a)| ≤ δa;
2"min(|vl

x−vr
y|,|v

l
y−vr

x|)
(vr

x−vl
x)+(vr

y−vl
y)

, a ∈ AN ∧ (vlx (= vrx ∧ vly (= vry)∧
|f(sim(x), a) − f(sim(y), a)| ≤ 2δa;

1 − |f(x,a)−(vl
y+vr

y)/2|
(vr

y−vl
y)

, a ∈ AN ∧ (vlx = vrx ∧ vly (= vry)∧
(vly ≤ f(x, a) ≤ vry);

0, otherwise,

(12)

where | · | denotes the absolute value.
Herein, vlx and vrx are the left and right endpoints of the interval f(x, a),

respectively. When vlx = vrx, f(x, a) is a crisp value in the original IHIS. When
vlx < vrx, f(x, a) is an interval value in the constructed IHIS*. To more intuitively
understand the proposed functions for the similarity of interval values in Eq.
(12), the possible overlapping interval between the two objects with two interval
values is shown in Fig. 1-(a), one interval value and one crisp value is shown in
Fig. 1-(b).

In the light of tolerance relation [7], we give the neighborhood tolerance
relation based on the defined similarity function as follows.
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Fig. 1. The possible overlapping interval of two different cases.

Definition 5. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, δa is a neighbor-
hood radius. For ∀a ∈ A, neighborhood tolerance relation NT δ

a is defined by

NT δ
a = {(x, y) ∈ U2 | S∗

a(x, y) ≥ ζ ∨ (f(x, a) = ∗ ∨ f(y, a) = ∗)}, (13)

where ζ ∈ [0, 1] is a threshold for similarity and NT δ
a satisfies symmetry and

reflexivity.
Definition 6. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, for ∀a ∈ A, the
neighborhood tolerance class of any object x ∈ U is defined by

NT δ
a (x) = {y ∈ U | (x, y) ∈ NT δ

a}. (14)

The neighborhood tolerance class under the attribute set A is defined by

NT δ
A(x) = {y ∈ U | ∀a ∈ A, (x, y) ∈ NT δ

a} =
⋂

a∈A

NT δ
a (x). (15)

Example 4. We continue with Example 3 and suppose ζ = 0.2. According to
Eqs. (13), (14) and (15), we can build neighborhood classes of every object as
follows:

As shown in Table 4, the neighborhood classes of TWNDM, INRSM are far
looser than AS-NRSM:

(1) Objects x4 and x5 are in the same neighborhood class, i.e., x4 ∈ N δ
A(x5), x5 ∈

N δ
A(x4) in TWNDM and INRSM, but by AS-NRSM they are irrelevant.

(2) Objects x6 and x7 are in the same neighborhood class, i.e., x6 ∈ N δ
A(x7), x7 ∈

N δ
A(x6) in TWNDM and INRSM, but by AS-NRSM, they are irrelevant.

According to analysis in Example 2, the possibility that objects x4 and x5,
x6 and x7 belong to the same neighborhood class is very low. By the method
of AS-NRSM, these objects are classified into the appropriate neighborhood
tolerance classes, namely, the classification based on AS-NRSM we proposed is
more reasonable. The algorithm of AS-NRSM can be described as follows:
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Table 4. Neighborhood classes of three methods

Method TWNDM INRSM AS-NRSM

Nδ
A(x1) {x1} {x1, x6, x7} {x1}

Nδ
A(x2) {x2, x3, x5, x6, x7} {x2, x3, x5, x6, x7} {x2, x3, x4, x6}

Nδ
A(x3) {x2, x3, x6, x7} {x2, x3, x4, x5, x6, x7} {x2, x3}

Nδ
A(x4) {x2,x4x4x4,x5x5x5, x6, x7} {x2, x3,x4x4x4,x5x5x5, x6, x7, x8} {x2,x4x4x4}

Nδ
A(x5) {x4x4x4,x5x5x5} {x3,x4x4x4,x5x5x5, x6, x7, x8} {x5x5x5}

Nδ
A(x6) {x2, x3, x5,x6, x7x6, x7x6, x7, x8} {x1, x2, x3, x4, x5,x6, x7x6, x7x6, x7, x8} {x2,x6x6x6}

Nδ
A(x7) {x2, x3, x5,x6, x7x6, x7x6, x7, x8} {x1, x2, x3, x4, x5,x6, x7x6, x7x6, x7, x8} {x7x7x7, x8}

Nδ
A(x8) {x6, x7, x8} {x3, x4, x6, x7, x8} {x7, x8}

Algorithm 1. The Algorithm of AS-NRSM

Input: (1) An IHIS Ω = (U,A, V, f, ∗, ?), where U = {xi, xj | 1 ≤ i, j ≤ n} and
A = {ak | 1 ≤ k ≤ m}; (2) The neighborhood radius parameter λ.

Output: Neighborhood tolerance classes NT δ
A(x).

1: for 1 ≤ k ≤ m do
2: for 1 ≤ i ≤ n do
3: if f(xi, ak) #= “?” ∧f(xi, ak) #= “*” then
4: f(xi, ak) ∈ V †

ak
; // V †

ak
is the known values set in attribute ak;

5: Compute the neighborhood radius δak ;
6: for 1 ≤ i ≤ n do // Approximately replacing the lost values by Definition 3;
7: for 1 ≤ j ≤ n do
8: if ∀ak ∈ A, f(xi, ak) =? then
9: According to Equations (7), (8) and (9), compute dA(xi, xj), Xc(ak) and

sim(xi);
10: According to Equations (10) and (11), replace the lost value by

f∗(xi, ak);

11: for 1 ≤ i ≤ n do // calculating the distances by Definition 4;
12: for 1 ≤ j ≤ n do
13: for 1 ≤ k ≤ m do
14: According to Equation (12), compute d∗

ak
(xi, xj) in IHIS*;

15: According to Definition 5, compute NT δ
a ;

16: According to Definition 6, compute NT δ
a (x) and NT δ

A(x).

The time complexity of Algorithm 1 is O(mn2).

4 Experiments and Analysis

4.1 Performance Comparisons of Different Algorithms

To better reflect the performance of the proposed algorithm, we conducted sim-
ulation experiments. The 5 data sets are downloaded from the University of
California at Irvine (UCI) data sets (http://archive.ics.uci.edu/ml/) and dis-
played in Table 5. The applicability and performance of TWNDM, INRSM and
AS-NRSM were evaluated for different types of data.

http://archive.ics.uci.edu/ml/
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Table 5. The description of data sets

No. Datasets Objects Conditional attributes (A) Decision attribute (d)

Categorical(AC) Numerical(AN ) Total(|A|)
1 Segment 2310 0 19 19 1

2 Heart 270 0 12 12 1

3 Annealing 798 9 6 15 1

4 MPG 398 4 5 9 1

5 Abalone 4177 1 8 9 1

We constructed three levels of missing values in the complete data set, that
is, (1) Replacing 0%, 5%, and 10% known values as the low-missing level. (2)
Replacing 15%, 20%, and 25% known values as the medium-missing level. (3)
Replacing 30%, 35%, and 40% known values as the high-missing level. Especially,
the missing values are composed of “lost value” and “do not care” values with
a ratio of 4:1 when carrying out AS-NRSM and TWNDM algorithms. Besides,
all of the missing values are “lost value” when performing INRSM algorithms
because the semantic of “do not care” is not considered in INRSM.

Herein, we introduce three metrics for measuring the neighborhood class
quality, namely, Precision (P ), Recall (R) and F1-score (F1). When the classifi-
cation is too loose, it will get low P and F1 and high R. When classification is
too strict, R and F1 will be low, and conversely, P will be high. We apply the
three metrics to the 5 data sets of Table 5, the experimental results are shown
in Table 6. We can get P of AS-NRSM is 0.95± 0.05 in the low-missing level of
the Segment data set, where 0.95 is the average performance in 0%, 5%, and
10% missing values and 0.05 is the standard deviation. Similarly, we can obtain
the average performance metrics of algorithms at the medium-missing level and
high-missing level. Herein, the optimal metrics are highlighted in bold. It is
observed that three metrics: P , R and F1 of three algorithms decrease with the
level of missing values increase. However, as the level of missing values increases,
the F1 of TWNDM and INRSM is lower than AS-NRSM in most data sets.

Table 6. Performance comparison by three algorithms in different data sets.

Data sets

Missing Level
AS-NRSM TWNDM INRSM

P R F1 P R F1 P R F1

Low 0.95± 0.050.95± 0.050.95± 0.05 0.95± 0.05 0.95± 0.050.95± 0.050.95± 0.05 0.88± 0.12 0.96± 0.040.96± 0.040.96± 0.04 0.91± 0.08 0.80± 0.06 0.95± 0.01 0.87± 0.03

Segment Medium 0.82± 0.050.82± 0.050.82± 0.05 0.82± 0.05 0.82± 0.050.82± 0.050.82± 0.05 0.60± 0.06 0.90± 0.01 0.73± 0.04 0.62± 0.05 0.93± 0.000.93± 0.000.93± 0.00 0.75± 0.02

High 0.70± 0.020.70± 0.020.70± 0.02 0.68± 0.06 0.69± 0.040.69± 0.040.69± 0.04 0.35± 0.07 0.85± 0.01 0.50± 0.07 0.49± 0.06 0.90± 0.010.90± 0.010.90± 0.01 0.68± 0.03

Low 1.00± 0.001.00± 0.001.00± 0.00 0.99± 0.01 0.99± 0.010.99± 0.010.99± 0.01 0.93± 0.08 1.00± 0.001.00± 0.001.00± 0.00 0.96± 0.04 0.98± 0.02 0.91± 0.02 0.94± 0.02

Heart Medium 0.98± 0.010.98± 0.010.98± 0.01 0.97± 0.00 0.97± 0.010.97± 0.010.97± 0.01 0.49± 0.19 0.99± 0.010.99± 0.010.99± 0.01 0.65± 0.17 0.83± 0.08 0.88± 0.01 0.85± 0.05

High 0.90± 0.020.90± 0.020.90± 0.02 0.96± 0.01 0.93± 0.010.93± 0.010.93± 0.01 0.15± 0.08 0.98± 0.000.98± 0.000.98± 0.00 0.25± 0.12 0.63± 0.04 0.86± 0.01 0.73± 0.02

Low 1.00± 0.001.00± 0.001.00± 0.00 0.98± 0.020.98± 0.020.98± 0.02 0.99± 0.010.99± 0.010.99± 0.01 0.99± 0.01 0.98± 0.020.98± 0.020.98± 0.02 0.99± 0.010.99± 0.010.99± 0.01 0.96± 0.03 0.89± 0.02 0.93± 0.02

Annealing Medium 0.99± 0.000.99± 0.000.99± 0.00 0.93± 0.010.93± 0.010.93± 0.01 0.96± 0.010.96± 0.010.96± 0.01 0.99± 0.000.99± 0.000.99± 0.00 0.92± 0.01 0.96± 0.000.96± 0.000.96± 0.00 0.89± 0.02 0.86± 0.01 0.87± 0.02

High 0.98± 0.00 0.93± 0.010.93± 0.010.93± 0.01 0.95± 0.000.95± 0.000.95± 0.00 0.99± 0.010.99± 0.010.99± 0.01 0.92± 0.01 0.95± 0.000.95± 0.000.95± 0.00 0.82± 0.02 0.82± 0.01 0.82± 0.01

Low 0.96± 0.030.96± 0.030.96± 0.03 0.99± 0.010.99± 0.010.99± 0.01 0.97± 0.020.97± 0.020.97± 0.02 0.94± 0.06 0.96± 0.05 0.95± 0.05 0.87± 0.02 0.81± 0.02 0.83± 0.02

MPG Medium 0.85± 0.060.85± 0.060.85± 0.06 0.88± 0.02 0.86± 0.040.86± 0.040.86± 0.04 0.78± 0.04 0.89± 0.010.89± 0.010.89± 0.01 0.83± 0.02 0.83± 0.01 0.77± 0.01 0.80± 0.01

High 0.74± 0.03 0.82± 0.03 0.78± 0.030.78± 0.030.78± 0.03 0.67± 0.03 0.86± 0.020.86± 0.020.86± 0.02 0.76± 0.03 0.77± 0.020.77± 0.020.77± 0.02 0.73± 0.01 0.75± 0.01

Low 0.89± 0.100.89± 0.100.89± 0.10 0.94± 0.05 0.92± 0.08 0.89± 0.100.89± 0.100.89± 0.10 0.96± 0.060.96± 0.060.96± 0.06 0.95± 0.050.95± 0.050.95± 0.05 0.76± 0.04 0.96± 0.000.96± 0.000.96± 0.00 0.86± 0.02

Abalone Medium 0.82± 0.030.82± 0.030.82± 0.03 0.86± 0.01 0.84± 0.030.84± 0.030.84± 0.03 0.75± 0.03 0.87± 0.03 0.80± 0.03 0.63± 0.03 0.95± 0.000.95± 0.000.95± 0.00 0.79± 0.02

High 0.72± 0.030.72± 0.030.72± 0.03 0.85± 0.03 0.78± 0.000.78± 0.000.78± 0.00 0.64± 0.00 0.86± 0.02 0.74± 0.01 0.55± 0.02 0.94± 0.010.94± 0.010.94± 0.01 0.75± 0.01
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Due to F1 being a more comprehensive metric than P and R to evaluate the
performance of the algorithms, we choose F1 as the judging metric. To make a
more intuitive comparison of different algorithms, we take 0% - 40% of missing
values as x-axis to observe the metric F1 changes of three algorithms, as shown
in Fig. 2. The performance F1 of the three algorithms decreases with the increase
of missing ratio, while the proposed algorithm AS-NRSM can achieve optimal
performance in most datasets.
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(c) Annealing
0% 10% 20% 30% 40%

50

60

70

80

90

100

 AS-NRSM
 TWNDM
 INRSM

F1
-s

co
re

 o
f t

hr
ee

 m
od

el
s (

%
)

(d) MPG
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(e) Abalone

Fig. 2. F1-score of algorithms in different ratios of missing values

In order to explore the influence of different neighborhood parameters λ on
the classification performance, we conduct a comparative experiment in a low
missing level. Specifically, we move λ from 1 to 5 with a step of 0.5 to compare the
F1 performance of three algorithms under different δ neighborhoods constructed
by λ.
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(e) Abalone

Fig. 3. F1 of algorithms in different neighborhood parameter λ

As shown in Fig. 3, the performance F1 of INRSM is sensitive to parameter
λ, which decreases as the λ becomes larger in (a) Segment, (c) Annealing, (d)
MPG and (e) Abalone, and increases as the parameters become larger in (b)
Heart. In addition, the F1 of AS-NRSM and TWNDM in the 5 data sets are
basically synchronous floating. Still, it’s observed that AS-NRSM can achieve the
optimal performance F1 in most data sets, and is more stable than the other
two algorithms.

5 Conclusion and Future Work
Recently, a few studies have emerged to focus on dealing with incomplete hybrid
data in IHISs. However, the indiscernibility relations of the existing studies are
too loose, and may lead to unreasonable classification results. To describe the
uncertainty of missing values as much as possible and enhance the performance
of classification, we proposed the Approximate supplement-based Neighborhood
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Rough Set Model (AS-NRSM). First, the lost values in IHIS have been approx-
imately replaced by the known values or interval values. Then we obtained a
constructed IHIS* with only one semantic from the original IHIS. Next, we
defined a novel similarity function for the constructed IHIS* which contains
three types of data. Then, the AS-NRSM is constructed for an IHIS*. Finally,
comparative experiments are carried out to prove the performance of AS-NRSM.
In the future, we will extend our work to a more comprehensive and realistic
data environment to validate the effectiveness of the model.
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