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Abstract—Current Computational RFID Tags (CRFIDs) are
pre-programmed with only a single firmware instance in their
flash memories for runtime operation where the functionality
of CRFID is pre-determined by the firmware at the time of
programming. As a result, the current CRFIDs require wired
interface to re-program a new firmware which strictly limits their
use to easy-to-reach places. We address this issue by remotely
changing the behavior of CRFIDs by switching their firmware
through commercial RFID reader and the EPC protocol, without
demanding any hardware upgrades to CRFID tags or modifica-
tion to EPC standard.

We articulate the design, implementation and evaluation of
FirmSwitch - a wireless scheme that equips CRFIDs with the
capability of switching their firmware during runtime. This is
achieved by wirelessly passing the encoded switching parameters
to CRFID tag through RFID reader which leverages the tag to
switch among firmwares and execute them for intended cycles.
We further employ the schemes of pre-defined EPC and pre-
calculated CRC for computational liberty and energy efficiency.
For concept validation, we develop a User Interface to switch
between four firmwares and extensively test our scheme. The
results show that FirmSwitch offers a minimal energy overhead
of 11.5nJ to 2.037μJ, and incurs a switching delay of 7.8 to 1498
μsec. As overall, our system achieves a success rate of 87% for
an interrogation range of 0.5 meter.

Index Terms—Computational RFID; Execution Flexibility;
Firmware Execution; EPC.

I. INTRODUCTION

Computational RFID (CRFID) is an emerging technology
which not only extends the capabilities of RFID tags for
enhanced operations like sensing and computation [1]–[3],
but in parallel, opens new opportunities for Internet-of-Things
and ubiquitous computing [4]–[6]. The CRFID tag is a PCB
based far-field passive RFID tag comprising Microcontroller
Unit (MCU), EEPROM, sensors and discrete architectures for
transmitter, receiver, power harvester and else. Based on WISP
as the pioneering CRFID project [7], many other variants have
been developed on the same design [6], [8]–[11].

We observe that present versions of CRFID are programmed
with a single firmware which greatly restricts their function-
ality to a single and specific operation during runtime. In real
scenarios, the CRFIDs maybe required to execute multiple
operations, such as sensor polling and data collection in one
firmware and encryption in another firmware. For such cases,
any firmware update requires the MCU in the tag to be
physically connected (through programming wires) to Flash
Programmer, which often becomes infeasible. Like, in [12],

the UMASS-MOO CRFID is buried in concrete to measure
strain and temperature.

In order to leverage CRFID tags with multiple functional-
ities, a straightforward way is to pre-program the tag with a
single firmware that contains the source codes of all required
operations (each individual firmware). This may not be pos-
sible for many reasons. Like, each individual firmware may
have distinct logic and architecture that can present problems
in integration of diverse codes; combining the codes may
increase the size; developers may be unwilling to open their
source codes. We present the viability of a multi-firmware ap-
proach, named FirmSwitch, that intelligently combines various
firmwares for diverse operations. Furthermore, we consider our
work to be an elementary step towards “over-the-air (OTA)
programming” concept. Like, if a CRFID is equipped with
higher voltage (≥ 2.2V in Intel-WISP V4.1) to re-program
the MCU flash, then our work can be extended to wirelessly
receive, load and execute new firmwares without any wired
access which we will further elaborate in Section VII. We
highlight that the term “firmware” in our discussion refers to
the code that can realize hardware initialization, EPC protocol
communication, sensor polling and execute specific function
within the resources of CRFID tags.

In essence, our endeavour can be visualized as a subset
to “OTA programming” whereby we employ the commercial
RFID reader to remotely change the behaviour of a CRFID
tag through EPC protocol without requiring physical access or
hardware upgrades to CRFID tags. Initially, the user stores all
intended firmwares inside MCU flash during the deployment
phase and selects the most useable firmware as a default
firmware. Upon adequate harvested power, the CRFID tag
starts the execution of default firmware. Upon completion,
the user can select and switch the operation of CRFID to
a particular firmware by instructing the tag through a com-
mercial RFID reader and EPC protocol. Such selection is
realized by passing the switching parameters (like firmware
ID) through Write Access command in EPC protocol. To
make our system more flexible, the user can also specify the
number of firmware executions and next intended firmware
through a “switch command” sent from the reader. The whole
process is regulated under energy supervisor whereby system
moves between sleep and active modes upon power outage
and resumes the execution from the last point.

More in detail, we realize FirmSwitch in shape of Firmware
Arrangement at deployment phase, Instruction Encoding in
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EPC protocol and Firmware Loading and Execution for the
tag. While deploying the CRFID tag, the Firmware Arrange-
ment step appends each and every individual firmware with a
Decoding Module and compresses them to a single firmware
by means of public code, callback routines and a look-up table.
The finally compiled firmware code is downloaded to flash
memory through wired interface. To pass switching param-
eters to the tag, the Instruction Encoding process encodes
the switching instructions in EPC Write command which
contains the memory address of the target firmware and its
number of executions. On the tag side, the Firmware Loading
and Execution module extracts and decodes these parameters
and switches the firmwares and executes them for required
cycles.

A quick glance of faced challenges and their realized
solutions is given herein: 1) The Success response from the
tag is transferred in Write command requiring 16-bits of
CRC, which a CRFID cannot compute in runtime [13]. As
a solution, we use pre-computed CRC as in [14]. 2) Tag-ID
(EPC number) changes each time the data is sent back (as
legacy CRFIDs embed their sensor data within 96-bits of EPC
field to conserve power). In result, the reader foresees each
EPC field as a new tag ID. We resolve this issue by using
pre-defined EPC which also indicates the user about the start
of the switching operation. 3) Tag should not be left in unstable
state, e.g., PC pointer points to wrong memory address. We
use energy supervisor and memory pointers to put system to
sleep mode and to restart properly.

We demonstrate our scheme implementing a prototype on
Intel-WISP and realize a User Interface for commercial RFID
reader. At system level, we test FirmSwitch for switching
among Accelerometer firmware, Temperature Sensor firmware
and a firmware to response EPC number. We further eval-
uate our scheme against four different firmwares to validate
its efficiency for interrogation range, success rate, execution
time and energy overhead. The results show that FirmSwitch
provides a minimal energy overhead of 11.5 nJ to 2.037 μJ
and incurs switching delay of 7.8 to 1498 μsec. Moreover,
while switching amongst firmwares and corresponding with
the reader in runtime, our system achieves a success rate of
87% for 0.5 meter.

We believe that FirmSwitch can enormously reduce the
deployment and maintenance overheads of CRFID systems.
Following are the chief features:

• FirmSwitch is a wireless firmware switching approach for
CRFID tokens without requiring any hardware upgrades.
The system conforms to EPC-C1G2 standard and can be
realized through commercial RFID reader.

• It equips CRFID tags with firmware flexibility whereby
the user can load several firmwares in tag’s flash memory
during deployment phase which can be switched during
system runtime.

• It is light-weight in terms of computation, communication
time and power consumption.

• System starts execution with a default firmware while
resumes its operation from last execution point during

duty cycle mode.

Admittedly, the chief limitation of FirmSwitch is the number
of firmwares that can be stored in flash memory, which
we emphasize is the limiting factor because of the size of
flash memory. Our scheme can be scaled to more number of
firmwares if UMASS-MOO CRFID is used with 116 Kbyte
of flash. In essence, our system is directly scalable to higher
onboard flash memories. As a future extension, we foresee
to implement the complete over-the-air programming, i.e., a
user can re-write the onboard flash with new firmware through
RFID reader. Since, current CRFIDs operate on 1.8V which is
inadequate to program the MCU flash, therefore, we envision
two viable modifications to CRFID tag: it can be the re-design
of harvester topology and power regulation to offer higher
voltage, or, the change in MCU which can re-program the
flash at low voltages (like MSP430FR5969 [15]).

The remainder of this paper is structured as followed: Sec-
tion II comprehends various firmware approaches for CRFID
systems. The design challenges are explained in Section III
while the FirmSwitch is elaborated in Section IV. Section
V illustrates the system implementation and evaluation on
Intel-WISP while the evaluation metrics and the results are
discussed in Section VI. The paper concludes at Section VII.

II. RELATED WORK

To best of our knowledge, FirmSwitch is the first approach
to offer firmware flexibility for CRFID tags through wireless
medium using RFID reader and EPC protocol. We only find
two relevant works on MSP430 series of microcontrollers that
tend to manage the firmware execution. In [13], the authors
presented an energy aware schedular which maps the harvested
voltage with appropriate firmware to execute. The selection of
new firmware is based upon the extent of energy it utilizes.
However, the said scheme is restricted only to energy aware
scheduling and user does not have flexibility to select a specific
firmware as per the requirement. The authors in [16] presented
a pre-programmed look-up table schedular. The MCU follows
a pre-defined look-up table to execute the tasks in a cycle
which is restricted to the scheduling of look-up table only.

Various firmware approaches have been presented for CR-
FIDs as far as their firmware execution, energy-aware task
scheduling and other functionalities are concerned. The Me-
mento [13] enables the CRFID tag to complete the long-
running computations by breaking a single firmware into
interruptible executions. The Harmony [14] pre-calculates the
CRC to save harvested energy and the execution time. In [17],
[18], the authors proposed a scheme to enhance the security
of proximity cards with CRFID enabled secret handshakes.
Several techniques are presented in [14], [19]–[21] which
allow efficient storage and secure data transfer between a
CRFID tag and the commercial reader.

III. DESIGN CHALLENGES

We faced three challenges during implementation of Firm-
Switch. First two challenges relate to Inventory and Access
Rounds of EPC protocol for using the “empty” tag-ID field
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Figure 1. FirmSwitch follows the scheme of Floating EPC during routine
firmware execution for N times, which is in analogy to legacy Intel-WISP
CRFID. For switching operation, it incorporates Pre-defined EPC during
Inventory Round and Pre-calculated CRC during Access Round.

and calculating the CRC value. The third challenge relates to
preventing the tag to move into unstable state.

In Fig. 1, we illustrate the Inventory and Access Rounds of
EPC standard [22]. The current CRFIDs embed their sensor
data inside 96-bits of EPC number (TID field) during Inventory
Round to backscatter the information. This, in result, changes
the TID during each operation which we term as Floating
EPC. For FirmSwitch, we have two scenarios. In first case,
it executes a firmware for N times and backscatters the data
during Inventory Round just like current CRFIDs. In here,
we adopt the same procedure of Floating EPC and embed
the data in TID field. In second case towards the successful
execution of a firmware, FirmSwitch has to read the switching
parameters during Access Round. This requires the execution
of Inventory Round before the Access Round which involves
the TID reply. But the TID field is empty as there is no sensor
data. In resolution, we use a pre-defined number as the tag-
ID in “empty” TID field which we term as Pre-defined EPC.
Such an architecture of floating and pre-defined EPC greatly
simplifies the understanding and debugging of FirmSwitch, as
illustrated in Section V-A.

Next, once the tag has successfully executed the firmware
operation and received new switching parameters, it needs
to reply a Success message which requires a CRC value.
However, we observe that current CRFIDs cannot calculate
CRC within the strict time slots prescribed by the EPC
protocol because of low computational capability and power
constraints [14]. To this end, we pre-compute CRC values
in line with [14] and resultantly, FirmSwitch can backscatter
Success reply during system runtime.

The third challenge relates to preventing the tag to go into
unstable state once system moves from low power modes
to active mode. We use memory pointers (Program Counter
Pointer and Reset Vectors) for proper firmware switching, exe-
cution and restart operation. Moreover, following the approach
of current CRFIDs, we use energy supervisor to move our
system between active and power down states.

IV. FIRMSWITCH DESIGN APPROACH

FirmSwitch consists of three steps: Firmware Arrangement,
Instruction Encoding, and Decoding and Execution. Firmware
Arrangement step efficiently integrates and compresses the
individual firmwares to a single firmware and places them
in specific memory segments. Moreover, each firmware is

Figure 2. Decoding Module is the key block in FirmSwitch. It parses the
switching instructions and either executes the same firmware for specified
operations, or, selects and executes the next firmware for intended cycles.

also appended with a Decoding Module. It is the key module
which actually performs the switching operation, as shown in
Fig. 2 and later explained in Section IV-C. The Instruction
Encoding process embeds the switching parameters inside
Write command of EPC protocol. The Decoding and Execution
process parses the switching parameters passed by the reader
and selects new firmware for intended operations.

A. Firmware Arrangement

The prime function of Firmware Arrangement step is to
embed multiple firmwares in space-limited flash memory
during deployment phase. First, each firmware is appended
with a Decoding Module of 210 bytes. Next, all firmwares
are compressed by inspecting and segregating the common
routines as “public code” which are called back using a look-
up table. The finalized firmware is saved in flash memory as
a single firmware. Both steps are explained below.

1) Firmware Compression: Once we compile each indi-
vidual firmware to its binary code, we observe some duplicate
parts which can be taken out and defined as “public code”. For
example, the size of Accelerometer and Temperature Sensor
firmwares is 2.90 and 2.78 Kbyte while both firmwares include
1.1 Kbyte of EPC protocol and 210 bytes of Decoding Module.
We first extract these two common codes and save them at a
memory location, say 0xA5F0. Next, we “refer” this public
code in Accelerometer and Temperature Sensor firmwares by
moving the PC pointer to 0xA5F0 through look-up table. The
look-up table stores the callback routines of each firmware and
the public codes. Upon successful completion, the execution
is returned back to original firmware.

2) Firmware Storage in Memory Segments: Intel-WISP and
its most variants are embedded with MSP430F2132 MCU
with 8 Kbyte flash memory. This is divided into segments
of 512 bytes whereby each segment is also the smallest unit
of data erasure. In firmware storage step, we assign memory
segments to each firmware and record its address. We stipulate
that every firmware should be placed at the beginning of
a memory segment. The main aim of such placement is to
have the Firmware Flexibility. This relates to our future work
which aims to re-write the firmware through EPC protocol,
like, we want to erase firmware-A and add a new firmware-
D. Following our placement scheme, we only need to erase
the memory segments of firmware-A and rewrite firmware-D
(provided latter is smaller in size). Without the use of memory
segmentation, we need to update the complete flash memory to
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Figure 3. Instruction Encoding in the Write Command.

replace even one small firmware which we envision to increase
the update overhead in terms of time and energy.

B. Instruction Encoding on Reader Side

In EPC protocol, the RFID reader can read or write the
data, lock and disable the tag using Access commands. We use
Write Access command to pass our switching instructions to
the tag. We embed our data in three fields of Write command:
2 bits of MemBank, 16 bits of WordPtr, and 16 bits of Data
field. Fig. 3 gives an overview of MemBank, WordPtr and Data
fields along with their utilization for Instruction Encoding
process in FirmSwitch.

The Instruction Encoding step aims to embed and encode
the switching parameters in the Write Access command. The
switching parameters include the Flag, N and firmware
address. The Flag is used to distinguish the “switch” com-
mand from routine commands of EPC protocol, N illustrates
the number of executions and firmware address indicates
the memory address of target firmware.

Unlike RFID tags, CRFIDs do not have reserved memories
for EPC, TID, and User Memory, and therefore, we can use
two bits of MemBank as a Flag to distinguish between switch-
ing operation (coded as 11b) and routine Access command
operation (00b), as illustrated in Fig. 3. We encode 16 bits of
WordPtr to pass the memory address of the target firmware
which we want to switch (Section IV-A2). Similarly, the 16-
bits of Data field are used for encoding the number of firmware
executions. In our evaluation, we encode these 16-bits as
0x0001 for one time, 0x1111 for continuous and 0xF3E8 for
1000 time execution followed by the termination of firmware.

C. Decoding and Execution on Tag Side

As shown in Fig. 2, the Decoding and Execution process
decodes the switching instructions passed through Write com-
mand and in result, executes the same firmware for specified
cycles or selects the new firmware for specific number of
executions.

The job of Decoding process is to parse the switching
parameters (Flag, N and firmware address) and save them
in MCU RAM. It first implements the EPC-C1G2 standard till
Access Round and interprets the value of Flag from Write
command to check whether the user wants to use the Access
command in a routine way (Flag = 00b) or pass the switching
parameters (Flag = 11b). For Flag = 00b, FirmSwitch
continues to run EPC protocol. For Flag = 11b, FirmSwitch
stores the value of N and firmware address in MCU RAM.

Figure 4. Illustration of FirmSwitch transitioning between Active Mode and
various Low Power Modes.

The Execution process reads the variables N and
firmware address from system RAM and moves the PC
pointer to target firmware reset vector which would initialize
the firmware execution. Moreover, the execution process keeps
the track of number of successful executions and updates
the parameter N to N -1 in the RAM upon each firmware
execution. For N successful executions, the tag sends a
Success acknowledgement to the reader. If the system runs
out of power and goes into sleep mode (LPM4 mode which
retains the RAM contents), the Execution module learns the
parameters N and firmware address from the RAM once
harvested power is adequate, and resumes its execution from
the last point.

We highlight that our system uses pre-defined EPC and
pre-calculated CRC, and operates upon various power saving
modes upon inadequate harvested power, as explained next.

1) Pre-defined EPC and Pre-calculated CRC: During rou-
tine firmware execution, FirmSwitch uses Floating EPC to
backscatter the sensor data, as explained in Section III. Our
scheme differs once the reader wants to pass the switching
parameters through Write Access command. In here, the
FirmSwitch embeds the Pre-defined EPC in “empty” TID field
to execute the Inventory Round and moves to Access Round
to read the Write instruction.

During Access Round, FirmSwitch is required to compute
the CRC value to reply a Success message. If tag fails
to reply Success, the reader will consider it as a failure.
However, because of low computational capability and power
constraints, the current CRFIDs cannot calculate CRC value
during system runtime [14]. In resolution, we employ the
method of pre-computing CRC as introduced in [14]. Follow-
ing this approach, whenever the CRFID tag is powered up, the
FirmSwitch will first check whether all CRC values have been
pre-calculated or not. If not, it will pre-compute CRC values
and store them in one list which will be used by the tag to
reply the Success message to the reader.

2) Transition between Active and Power saving Modes:
Our system executes between Active and Power Saving modes
for energy conservation (Fig. 4). The MSP430F2132 micro-
controller used in our evaluation has two types of operating
modes: Active mode (AM) and software selectable Low-Power
Mode (LPM). The low power mode is further categorized to
five types, LPM0 to LPM4, which offer various functionalities.
We use AM, LPM1 and LPM4 modes. In brief, only the CPU
is stopped in LPM1 mode while only the RAM is retained in
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Figure 5. User Interface passes switching parameters to CRFID tag through
RFID reader, receives the reply and displays the results.

LPM4 mode. In FirmSwitch, the MCU moves between active
and low power modes depending upon interrupts generated by
the energy supervisor.

The execution starts from LPM4 (Step-1) from power-up.
When sufficient power is harvested and energy supervisor
generates an interrupt, the system enters into Active Mode
(Step-2) and decoding module checks the RAM contents for
any previous process (N and firmware address). If RAM
does not contain any contents, the MCU moves through Step-
3 to Step-4 to pre-calculate CRC. Next, the system remains
in LPM4 mode at Step-5 and waits for a hardware trigger to
indicate the Query command from the reader. Upon receiving
the Query and having adequate power, the system executes
the EPC protocol in Active Mode during Step-6 to process
the Write command, and then moves to Step-2.

Once switching instructions are received, the system moves
from Step-2 to Step-7 (both Active modes) to execute the
target firmware. During N executions, the tag backscatters the
sensor data. Upon N successful executions, system returns a
Success message and moves to Step-1. Once harvested power
becomes inadequate during firmware execution in Step-7, the
system moves to Step-1 till adequate power is harvested. It will
resume the execution while moving from Step-2 to Step-7 to
complete the remaining number of executions before finally
going to Step-1. For the case once the harvested power is
completely drained, the system will restart from Step-1, same
like power-on reset.

V. IMPLEMENTATION AND EVALUATION

We implement FirmSwitch on Intel-WISP CRFID (DL
WISP V4.1) as shown in left part of Fig. 6, and develop a
User Interface in C# (CSharp) for commercial RFID reader
(Impinj Speedway R420) shown in Fig. 5. To measure the
power dissipation with and without FirmSwitch, we make a
small modification to Intel-WISP and put a series resistor
of 30Ω in power path of the MCU, like in [23]. We find
out that a value between 30-33Ω serves our purpose; a high
resistor value adequately drops the voltage below 1.8V which
is the minimum operating voltage for MCU, while a low
value results in a voltage drop in least microvolts which
is difficult to measure with high resolution from a general
purpose Multimeter (Voltage Meter).

Figure 6. Experimental Setup for overall System Evaluation.

A. User Interface

The User Interface connects to commercial reader and
passes the switching parameters through Write command. It
also reads the backscattered CRFID tag’s data and displays
the results. We demonstrate our User Interface in Fig. 5 which
switches firmwares inside Intel-WISP CRFID tag having Ac-
celerometer, Temperature Sensor and EPC (TID) firmwares.
These firmwares are firstly downloaded as a single firmware
inside MCU flash through a wired interface. Next, the User
Interface is connected to RFID reader and we manually enter
the parameters of Write command (MemoryBank = 11

means to switch firmware, WordPtr field gives the address
of the target firmware and Data field determines the number
of executions). In our evaluation, we first read the temperature
for five times using the onboard temperature sensor. Then,
we manually edit the Memory Bank, WordPtr and Data
fields on User Interface to switch firmware execution to
Accelerometer sensing. The Decoding Module switches to
Accelerometer firmware and backscatters the motion values
along three axis (the movement of “Jupiter” icon gives the
pictorial illustration of x,y,z measurements).

The User Interface also illustrates the pre-defined and
floating EPC values in top right window of Fig. 5. The pre-
defined EPC value is visible at 2.946 sec whereby we instruct
the CRFID to select the Temperature Sensor firmware and
execute it for 5 times. Next five subsequent floating EPC
values (from 3.025 to 4.092sec) give us the temperature sensor
values. Then, the reader passes next Write instruction for
which the tag switches to Accelerometer firmware (the pre-
defined EPC value shown at 4.360sec). During this operation,
we use pre-calculated CRC values, as explained earlier.

B. Evaluation Metrics

We evaluate our system at an outdoor place with both the
reader and the tag placed at 0.5 meter distance, as shown in
Fig. 6. The CRFID tag is equipped with a 30Ω resistor to
measure the power overhead by the FirmSwitch, as discussed
before. The evaluation is aimed for following three aspects:

1) Overall System Evaluation: The time delay of a single
firmware (Accelerometer code) is measured with and without
FirmSwitch. This also checks the conformance of FirmSwitch
to EPC standard with commercial RFID reader.

2) Time and Energy Overhead: The time delay and en-
ergy overhead is measured once FirmSwitch switches two
firmwares. The evaluation excludes the overhead caused by
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Figure 7. System evaluation once Intel-WISP executes Accelerometer code
without FirmSwitch (annotated by T imeAcc and AvgT imeAcc) and with
FirmSwitch (T imeSwitch and AvgT imeSwitch) for 1000 cycles. The
former executes the EPC protocol till Inventory Round while the latter
executes both the Inventory and the Access Rounds.

EPC protocol and is specific to the functionality of Decoding
Module at two MCU clock frequencies, 1.127 and 3.472 MHz.

3) Success Rate and Interrogation Range: We calculate the
success rate in line with interrogation range for FirmSwitch
and compare it with two firmwares, the first backscatters the
sensor data in TID field while the second firmware calculates
the CRC value.

VI. EVALUATION RESULTS

A. Overall System Evaluation

We check the conformity of our scheme with EPC proto-
col. Since, EPC protocol puts strict limits on interrogation
and reply timings of the reader and the tag, therefore in
this evaluation, we restrict ourself to time measurements of
overall system with and without FirmSwitch. The time and
energy overhead of FirmSwitch’s switching operation (Decod-
ing Module) would be illustrated in next section. In here, we
first use the CRFID tag without FirmSwitch and continuously
read the Accelerometer data through RFID reader for 1000
times. Next, we employ FirmSwitch firmware whereby the
Decoding Module selects and executes the Accelerometer
firmware during every cycle of interrogation. This depicts the
overall system delay introduced by FirmSwitch in selecting,
switching and executing a firmware.

We evaluate our system at an outdoor place with both reader
and tag placed at 0.5 meter distance, as shown in Fig. 6. The
results are shown in Fig. 7. The average time delay for overall
system without FirmSwitch is annotated as AvgT imeAcc

which comes out to be 6988.721μsec. Similarly, the average
time delay with FirmSwitch is annotated as AvgT imeSwitch

which comes out to be 15004.174μsec. The time difference,
8015.453μsec is the time taken by Decoding Module to exe-
cute the EPC protocol till Access Round to read the switching
parameters from the Write command, and resultantly select,
load and execute the Accelerometer firmware. In brief, the
overall delay introduced by FirmSwitch is well confined within
time limits defined by the EPC standard.

Table I
SUMMERY OF TIME AND ENERGY MEASUREMENTS

Switching
Operation

Clock
(MHz)

VRes

(V)
VReg

(V)
�V
(V)

Tswitch

(μs)
Energy

(nJ)
A→B 1.127 1.7851 1.8009 0.0158 1491 1401.8
A←B 1.127 1.7883 1.8015 0.0132 496 390.3
A→B 3.462 1.7848 1.8051 0.0203 478 577.3
A←B 3.462 1.7859 1.8073 0.0214 160 203.8
C→D 1.127 1.7813 1.8044 0.0231 19.6 26.9
C←D 1.127 1.7826 1.8049 0.0223 20.2 26.8
C→D 3.462 1.7808 1.8057 0.0249 7.8 11.5
C←D 3.462 1.7795 1.8048 0.0253 8.0 12.0
B→B 1.127 1.7817 1.8046 0.0229 1498 2037.3
B←B 3.462 1.7816 1.8055 0.0239 480 681.3

B. Time and Energy Overhead by FirmSwitch

To measure the time delay and energy overhead pre-
sented by FirmSwitch, we devise a Scheduling Scheme
which switches the firmware execution between four different
firmwares. This gives us the overhead of Decoding module
which performs the actual switching procedure.

1) Time delay measurements: To demonstrate time con-
sumption, we devise a Scheduling Scheme which gives us good
illustration about time delay on the Oscilloscope. We take four
different firmwares, firmware-A, B, C and D with 2.14, 3.07,
1.216 and 1.735 Kbytes, respectively. Next, we compile two
firmwares to flash memory at one time, and check the time
delay between switching the codes, as explained below:

For illustration, we explain Switching Scheme for two
firmwares, A and B which are switched to each other in
a repetitive manner for 1000 cycles. During each cycle,
firmware-B executes for 500 times followed by the Decoding
Module to select and load firmware-A to execute for 250 times.
The choice of 500 and 250 executions is empirical with an
aim to have a clear view on the Oscilloscope to differentiate
two firmwares, and also adequate enough to measure the time
delay. To visualize the firmware execution and switching delay
in form of voltage waves, we set a flag to high state whenever
decoding module selects and loads a firmware. Similarly,
whenever a firmware completes its execution, the flag is set
low. The toggling of flag before and after the loading and
execution of each firmware renders us the indication that
an event has started and completed. We use MCU’s GPIO
P3.0 as a flag and view its output as a voltage wave on the
Oscilloscope, as shown in Fig. 8. We repeat same procedure
for all four firmwares to measure the time delay and energy
consumption. Also, each experiment is performed for two
clock frequencies, 1.127 and 3.472 MHz, to see the impact
of MCU clock on the execution time.

The results in Table I show a maximum switching time
of 1498 μsec for switching firmware-A to firmware-B and a
minimum switching time of 7.8 μsec for switching firmware-
C to firmware-D. The difference in time delay is caused by
the size and initialization time taken by each firmware. Same
is more illustrative in Table I and Fig 8 once firmware-B is
switched to itself. In here, the time delay is 1498 μsec at 1.127
MHz clock and the Oscilloscope waveform depicts the same
dip for switching between same firmware, which is different
in other cases.
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(a) ProgA and ProgB at 1MHz (b) ProgC and ProgD at 1MHz (c) ProgB and ProgB at 1MHz

(d) ProgA and ProgB at 3MHz (e) ProgC and ProgD at 3MHz (f) ProgB and ProgB at 3MHz
Figure 8. Delay measurements of FirmSwitch. The figures illustrate the time consumed by Decoding Module to switch among four firmwares, A, B, C and
D. The evaluation is performed for 1.127 and 3.462 MHz clock frequencies.

The results of clock frequency are quite understandable. As
frequency is increased from 1.127 to 3.472 MHz (roughly
three times), the number of computations per second also
increase. Since, all four firmwares are intended for different
functions (they differ in number of variables and execution
flow), therefore, the execution time is also different. For
example, once the clock frequency is increased, the time taken
by firmware-A switching to firmware-B reduces by a factor of
3.11. Similarly, the time consumed in firmware-C switching
to firmware-D reduces by 2.51. We observe nearly the same
time factors once firmwares are switched in the reversed order,
i.e. once we decrease clock frequency, the time for firmware-
B switching to firmware-A increases by a factor of 3.1, and,
firmware-D switching to firmware-C increases by 2.52. The
time factor for firmware-B switching to itself remains 3.12.
The results of time and clock frequency are quite illustrative
from Fig. 8 and Table I.

2) FirmSwitch Energy overhead: We employ the same
procedure to measure the energy overhead of FirmSwitch.
The modified Intel-WISP tag (with 30Ω resistor) is used to
measure the power consumed by the MCU. In Fig. 6, the
output of Voltage Regulator (LDO) is 1.8V which we call
as VReg . The voltage dropped by 30Ω resistor is ΔV while
the resultant voltage input to MCU is termed as VRes. Our
evaluation begins once the FirmSwitch switches firmwares as
shown in the Table I at two clock frequencies, 3.462 and
1.127 MHz. We switch the firmwares for 100 rounds and
measure the voltage drop across resistor with a Multimeter.
Our method of measuring voltage drop across resistor follows
the procedure from [23] which is already used to measure the
power consumption of Intel-WISP CRFID during encryption.
We highlight that each time we power-on MCU, the output of
LDO, VReg , is around 1.8V with some tolerance (as per our
experiences we measure tolerance from 1.8073V to 1.8009V).

This is because of tolerances in Load Regulation (variations
in MCU’s current), Line Regulation (non-linear behaviour of
power harvester) and internal tolerance of the LDO [24].

The power consumption is calculated by ΔV 2/R. Our
results illustrate a maximum energy consumption of 2.037μJ
once firmware-B is switched to firmware-B at 1.127 MHz
clock, while the lowest energy consumption is 11.5nJ once
firmware-C is switched to firmware-D at 1.127 MHz. In
general, we observe that lower MCU clocks consume more
power than higher clock frequencies as shown in Table I.

Lastly, we emphasize that the energy consumption of power
harvesting designs is a critical parameter. The situation for
CRFID tags is more serious as a commercial tag typically
operates at 150μW power [25] whereas only the MCU in
WISP-CRFID consumes power in amounts of 960μW or more
[23]. From the results in Table I, we observe that energy
performance of FirmSwitch spans from 11.5nJ to 2.037μJ for
switching four firmwares of different sizes. Such a low power
consumption is the reason that we get adequate success rate
and range performance as illustrated in next section.

3) Success Rate vs. Interrogation Range: We evaluate our
system against two firmwares. First firmware only executes
the EPC protocol till TID (like legacy Intel-WISP tag) while
the second pre-calculates the CRC like in Harmony [14]. The
former implements the EPC protocol till Inventory Round
to backscatter the data in TID field. The latter executes the
EPC protocol till Access Round to backscatter data with
pre-calculated CRC. For FirmSwitch, we use Accelerometer
switching code which we used during overall system evalua-
tion (Section VI-A). The evaluation is performed at an open
place similar to setup in Fig. 6 but during this experiment, we
radially move the tag away from the reader in small intervals.

The evaluation results are shown in Fig. 9 which depict
87% success rate for 0.5m. FirmSwitch consumes more energy
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Figure 9. Range comparison for FirmSwitch with “Harmony” and EPC
backscatter (the CRFID backscatters the TID only).

than other two schemes because it backscatters sensor data as
well as pre-calculates CRC, which results in lower range. Till
1m distance, our system closely follows Harmony [14] but
performance degrades within 1-2.5m. The decrease in success
rate and interrogation distance over 1m is quite obvious;
FirmSwitch keeps the CRFID in active mode for Decoding
Module to select and execute new firmware and backscatter the
sensor data. It is not only energy but power (energy× time)
which is the reason that below 1m, FirmSwitch competes
Harmony because the CRFID tag harvests power at lower
distances (more time to harvest). As the distance increases,
the harvested power decrease while the Decoding Module in
FirmSwitch has to stay in Active Mode for firmware switching
and data backscattering operations (Section IV-C2), which in
result, decreases the range and the success rate.

VII. CONCLUSION AND FUTURE WORK

We present the design, implementation and evaluation of
FirmSwitch scheme which is used for wirelessly switching
the firmwares on CRFIDs. The user compiles the intended
firmwares in a once-for-all fashion during the deployment
phase which can be switched to each other during system run-
time through commercial RFID reader and the EPC protocol.
To this end, an in-depth discussion is carried on for three
phases of FirmSwitch, Firmware Arrangement, Instruction
Encoding, and Decoding and Execution. Incase the switching
process fails, the reader can send another switch command to
the tag or wait till the time tag is drained out of energy and
restarts again.

We evaluate FirmSwitch on Intel-WISP CRFID tag and
evaluate our scheme from two aspects. First, we test Intel-
WISP with and without FirmSwitch to check system overhead
in terms of time delay, success rate and the interrogation range.
Second, we employ a Scheduling Scheme for four different
firmwares and evaluate time delay and energy overhead as
incurred by the FirmSwitch itself. As a result, we propose
FirmSwitch as a viable and practical approach for firmware
flexibility in CRFID systems without any modifications to
CRFID tag, RFID reader or the EPC protocol.

In future, we plan to equip the CRFID with a modified
harvester, with which it would be possible to harvest higher
voltage (≥ 2.2V in Intel-WISP V4.1) to re-program the MCU
flash. Then our work can be extended to wirelessly receive,
load and execute new firmwares without any wired access. In
brief, we plan to re-program a new firmware using the “OTA
programming” concept.
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