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Abstract—In recent years, Computational RFID tags (CRFIDs)
have emerged as viable software-defined platform for academic
research and experimentation. In addition to EPC protocol, these
tags perform sensing and computation through power scavenging.
However, existing CRFIDs are pre-programmed to execute a
specific firmware whereas programming tools comprising wired
interface and PC-based software are required to erase, modify
or reprogram the tag. Such limitation demands an over-the-air
(OTA) scheme which can wirelessly upgrade or reprogram the
CRFID tags while following the EPC protocol.

We present the design, implementation and evaluation of R2

- the first OTA reprogramming scheme for CRFID tags without
requiring any modification to EPC protocol, or an upgrade
to RFID reader or CRFID tag. We develop a User Interface
and realize our scheme on three platforms which include both
software-defined as well as chip-based CRFIDs, i.e., WISP5.1 and
Optimized WISP (Opt-WISP), and Spider tag. It also includes
both the FLASH and FRAM based micro-controller memories.
We evaluate our scheme from three aspects: time and energy
overhead for reprogramming operation itself; overall system
delay to verify the compatibility of R2 with EPC protocol; success
rate in line with interrogation range. We foresee our endeavour
to offer viability of OTA reprogramming and upgrade for CRFID
systems.

Index Terms—Computational RFID; OTA Reprogramming;
Firmware Upgrade; EPC.

I. INTRODUCTION

Computational RFID tags (CRFIDs) can be categorized as
software-defined and fully passive UHF RFID tags which can
offer numerous computational and sensing facilities. The tag
itself is designed from ultra-low power and discrete compo-
nents in shape of a PCB circuit and follows the architecture
of a backscatter radio. This typically involves dipole antenna,
receiver, backscatter transmitter, power harvester, memory,
power management and a micro-controller unit (MCU) as
a processing module. The MCU is the core engine which
performs three main functions: Executes Class-1 Generation-2
UHF RFID protocol [1]; Realizes energy supervisor to operate
the system in duty cycle mode; Executes the computational or
sensing tasks while polling the analog or digital sensors and
accessing EEPROM for data retention. Since their inception
with WISP project [2] about ten years ago, CRFIDs have
emerged as an appealing platform for academic research and
experimentation like sensing the body movements [3], [4],
health monitoring [5], [6], bio-signal sensing [7], passive envi-
ronment sensing [8]–[10], access control [11], and cardinality

estimation [12], [13]. Broadly speaking, we categorize WISP-
based systems as “software-defined" CRFID tags which are
designed on discrete architecture. The other family, which
we term as “chip-based" CRFID tags, uses commercial chips
which execute EPC protocol and provide auxiliary power and
communication interface for external modules. Two such chips
are Andy100 [14] and SL-series [15]. Though the system is
fully passive in nature, we find battery assisted version in [16]
to realize an acoustic localization system.

Besides numerous advantages, the MCU in these devices
is programmed with only a specific firmware during de-
ployment time, which restricts their wider deployment and
application flexibility. Though the tag itself is wirelessly
controlled by RFID reader, we need specific programming
tools to modify, erase or reprogram even a single firmware
function. The situation becomes cumbersome once CRFIDs
are deployed in hard-to-reach places or their scale grows.
For example, a WISP-based CRFID is buried in concrete
blocks to measure temperature [8]; and any envisaged network
of CRFIDs where dozens of tags are deployed to perform
some sensing task. Under such conditions, the user has to
physically access each individual tag and change the firmware
through wired programming adapter and PC-based software
tools. This necessitates the demand for a flexible over-the-
air (OTA) reprogramming scheme whereby an RFID reader
should be able to wirelessly reprogram the MCU by using
EPC protocol.

In recent years, the OTA programming or OTA upgrade
has emerged as a hot research topic specifically in wireless
sensor networks (WSNs). However, these systems savor two
advantages over CRFID tags. The WSN nodes are typically
battery assisted devices, and can afford the high energy budget
required for reprogramming the MCU FLASH. Second, the
wireless protocols like Zigbee or Bluetooth offer adequate
flexibility to transfer new firmware image without strict time
and size limitations. In first intuition, the OTA programming in
CRFIDs seems viable as EPC protocol offers Access Round
operations to transfer bulk data between the reader and the
tag. However, CRFID systems are fully passive devices and it
might not be possible to transfer complete firmware image in a
single operation because of energy constraints. The situation
is further complicated once the protocol restricts the reader
to transfer the data in few byte segments, for which the tag
has to calculate the CRC and acknowledge the successful
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receipt of each data segment within 20 ms. Therefore, we
need an energy-aware OTA scheme that efficiently maps the
firmware image in line with tag’s on-board memory while
executing the mandatory operations of EPC protocol. Impor-
tantly, such scheme should be compatible with EPC protocol
without demanding any hardware upgrade to CRFID tags or
modifications to commercial RFID reader.

We address this issue by presenting the first OTA re-
programming scheme for CRFID tags named as R2, which
considers multiple intricacies for a system level design. For
EPC protocol, as no specific commands are offered for re-
programming operation, we embed reprogramming instruc-
tions within routine Write command. Towards the tag side,
we consider energy and time overhead for reprogramming
operation. At software level, we partition the target firmware
image in multiple segments in accordance with link timings
and MCU memory. Each image segment is further associated
with specific memory location of the tag. This leverages repro-
gramming flexibility in case a user wants to reprogram only a
specific segment. If the CRFID has been pre-programmed with
firmwares of accelerometer sensor, temperature sensor and
LED control and user wishes to “swap" the temperature sens-
ing firmware with humidity sensing, then R2 only erases the
temperature firmware and replaces it with humidity firmware.
Such memory arrangement scheme conserves harvested power
as well as computational and time overhead. Finally, the
firmware reprogramming is realized with assistance of boot-
loader that facilitates the specific placement of firmwares in
memory. This offers flexibility of reprogramming a specific
firmware segment instead of erasing and re-writing the whole
memory itself.

We evaluate R2 on three tags which belong to both
families of CRFIDs. As shown in Fig. 1, the tags from
software-defined CRFID family include Opt-WISP (left) and
WISP5.1 (middle). The former is primarily based on Intel-
WISP4.1DL and uses MSP430F2132 as MCU while latter
includes MSP430FR5969. Third is the chip-based Spider
CRFID tag by Farsens (right) that uses Andy100 CRFID chip,
and we interface MSP430F2132 as its MCU. Similarly, we
also evaluate R2 with different embedded memory systems,
i.e., FLASH memory in MSP430F2132 and Ferroelectric
RAM (FRAM) in MSP430FR5969. For all three systems,
we develop a User Interface which is based upon Impinj
Software Development Kit (SDK) [17]. We evaluate our
system from following aspects: time and energy overhead for
reprogramming operation; overall system delay including EPC
protocol and reprogramming operations both at reader and
tag sides; and success rate within the reader’s interrogation
range. All said parameters are evaluated for three CRFID
tags and a comparison is presented. The results show that
the reprogramming operation in R2 introduces a delay of
1.01 µs for WISP5.1 which can directly rewrite the data to
FRAM without erasure operation, and up to 14.4 ms both for
Spider tag and Opt-WISP as they need to erase and reprogram
the FLASH memory. We further evaluate energy overhead
by leveraging MCU frequencies for three tags. Regarding the

Opt-WISP WISP 5.1 Spider CRFID

Fig. 1. Software-defined CRFIDs Opt-WISP and WISP5.1, and chip-based
CRFID Spider.

energy overhead, the CRFIDs with FLASH memory consume
118.64 µJ for erase and reprogram operations while one with
FRAM consumes 7.264 nJ. For reprogramming 512 bytes,
the maximum overall system delay amounts to 28116.68 ms,
13886.33 ms and 13869.11 ms for Spider tag, Opt-WISP and
WISP5.1 while operating MCU at 1 MHz. Lastly, we observe a
success rate of 93%, 84% and 89.5% for Spider tag, WISP5.1
and Opt-WISP at 1 meter interrogation range.

Following are the chief contributions of our work:
• We present R2 which is the first OTA reprogramming

scheme for CRFID tags.
• R2 is fully compatible with EPC-C1G2 protocol without

demanding any modifications to RFID reader or hardware
upgrade to CRFID tags.

• R2 efficiently maps a firmware image according to
FLASH segments of MCU, which offers flexibility in
reprogramming operation and also conserves harvested
energy, time and computational complexity.

• We throughly evaluate our system for three CRFID tags
which belong to both software-defined and chip-based
CRFID families. Our selection also includes two type of
MCU memories, including FRAM and FLASH.

Admittedly, if everyone can reprogram the tags, the system
would be very vulnerable. This problem can, however, be
resolved by authenticating the Reader which would be our
future work.

The rest of this paper is organized as follows. We introduce
the related work in Section II and describe the design of
our system in Section III. The implementation and evaluation
metrics are explained in Section IV. The evaluation results are
included in Section V. The paper concludes in Section VI.

II. RELATED WORK

To best of our knowledge, R2 is the first work that realizes
OTA reprogramming on CRFID systems. We only find three
relevant works on software-defined CRFID tags. In Firm-
Switch [18], the authors remotely switch the behavior of
CRFID tag by selecting amongst pre-programmed firmwares.
A pre-determined look-up table approach is followed in [19]
where the MCU is restrict to follow the pre-determined
execution cycle flow. Also, the authors presented an energy
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Fig. 2. Generic block diagram of R2.

aware scheduling scheme [20] that maps the harvested voltage
with appropriate firmware for execution.

Besides WISP-CRFID and its various hybrids, we find
two commercial CRFID chips, Andy100 and SL-series. Both
chips execute the EPC standard and additionally provide the
power and communication interfaces (SPI or I2C) for external
modules like MCU or the digital sensors. However, no OTA
operation is provided in both cases. The CRFID tags based
upon Andy100 chip are used to sense data for Internet-of-
Things (IoT) [21]. The SL900A chip is used for soil moisture
monitoring [22] and reading tagged objects [23].

We find promising OTA programming schemes in WSNs.
XNP [24] is a single hop protocol that broadcasts the intended
firmware, while an energy efficient scheme is presented in [25]
that only distributes the changes to currently running pro-
grams. Based on multi-hop network, Deluge [26] provides a
reliable data dissemination for all sensor nodes. Aqueduct [27]
and TinyCubus [28] are proposed to distribute programs to
the selected nodes. As industrial products, WaspMote can be
wirelessly programmed through Zigbee [29], while a user can
use Bluetooth-enabled smartphone to reprogram the nRF51822
chip [30].

III. SYSTEM DESIGN

We discuss the design of R2 both from the reader and tag
sides. At reader’s end, we partition the firmware image into
multiple segments in accordance with MCU memory. Next, we
embed the reprogramming instructions and firmware segments
in the Write command. Towards the tag side, boot-loader
receives the instructions along with firmware segments and
executes the reprogramming operation. To make effective use
of the memory and to provide reprogramming flexibility, each
firmware image and corresponding memory reset vector are
placed at their specific memory segment. The overall scheme
is illustrated in Fig. 2 and explained below:

A. Instruction Encoding

In EPC protocol, the reader can transmit customized data
to the tag through Write or BlockWrite instruction. However,
BlockWrite is an optional command which is not supported by
all CRFID tags, i.e., Spider tag. Therefore, all three devices
are programmed by sending multiple Write commands which
is the approach used during our evaluation.

11: Default operation as per EPC protocol 

• • •

00: Reprogram

MemBank (2 bits)

01: New Firmware

10: Execute Firmware

Starting Address

WordPtr (16 bits)

Memory location
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Firmware segment

—
• • •

Fig. 3. Instruction Encoding in Write Command for software-defined CRFIDs.
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Fig. 4. Instruction Encoding for chip-based CRFIDs.

For software-defined CRFIDs, we encode the instructions in
Write command by embedding the parameters in three fields:
2 bits of MemBank, 16 bits of WordPtr and 16 bits of Data.
Since these tags use MCU RAM instead of reserved memory
for EPC, TID and User memory, therefore, we can utilize 2 bits
of MemBank as a flag to differentiate between start reprogram-
ming instruction (coded as 00b), firmware image transmission
instruction (01b), target firmware execution instruction (10b)
and routine Write instruction (11b) as illustrated in Fig. 3.
In our scheme, if MemBank=00b, the following WordPtr and
Data indicate the beginning of memory address and size of
the firmware image to be reprogrammed. If MemBank=01b, the
WordPtr and Data indicate the target memory address and 16-
bit firmware image segment. For MemBank=10b, the WordPtr
indicates the address of reset vector for target firmware to
be executed. Lastly, the MemBank=11b indicates the routine
Write operation, i.e., accessing the data in User memory.

The chip-based CRFID tag (Spider) is interfaced to an
external MCU through SPI interface. The internal architecture
of the CRFID chip restricts the data transfer to a maximum of
8 bits at one time. To address this issue, following procedure
shown in top portion of Fig. 4 is devised: we define the
8 LSBs of Data field as Si in the ith Write command for
MemBank=11b. To start the reprogramming operation, the
instruction is defined as Si‖Si+1‖Si+2 = AAh‖BBh‖CCh.
This is followed by next two 8 LSBs, i.e., Si+3‖Si+4 which
are combined to the memory address, while, the length of the
firmware segments is contained in Si+5‖Si+6. Then following
data is the firmware segment to be reprogrammed. In here,
the value of reset vector is appended with the last firmware
segment. To execute the firmware, the default instruction is de-
fined as Sk‖Sk+1‖Sk+2 =EEh‖EEh‖EEh which is followed
by the reset vector address of the target firmware embedded
in Sk+3‖Sk+4, as shown in bottom portion of Fig. 4.

B. Instruction Decoding and Execution

In software-defined CRFIDs, the MCU itself executes the
EPC protocol, decodes the command and parses the parameters
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embedded in three fields of Write command. In contrast, chip-
based CRFIDs first decode the reprogramming instructions
within their chip and then transfer the 8 LSBs of Data field
to external MCU through SPI. Based on different working
schemes, the instruction decoding process is executed differ-
ently for both types of CRFIDs.

In case of software-defined CRFIDs, the boot-loader re-
ceives the Write command, parse all three fields and checks the
CRC value. Then, it executes the instruction and replies with a
Success to the reader. As stated earlier, the value of MemBank
indicates the next task on the tag, i.e., for MemBank=10b, the
boot-loader shifts the value of WordPtr (reset vector address of
target firmware) to the Program Counter that holds the address
of the next instruction to be executed. For MemBank=00b, the
boot-loader sets the tag to reprogramming mode and erases the
memory (for FLASH-based MCUs). For MemBank=01b, boot-
loader writes the contents of Data field to the address stored in
the WordPtr field. For MemBank=11b, boot-loader leaves the
reprogramming mode and waits for the next command from
the reader.

For chip-based CRFIDs, the boot-loader in MCU receives
the data from SPI, parses the commands and firmware images,
and reprograms the memory. In this case, the CRFID chip
will initiate SPI communication and transfer the 8 LSBs of
the Data field once MemBank=11b. The boot-loader in MCU
receives the data, stores in the RAM and labels each 8-bit
data segment as Si. Whenever the reprogramming instruction
(AAh, BBh, CCh) is received, the boot-loader sets the MCU
to reprogramming mode and initializes the memory based
upon next four bytes (Si+3 and Si+4, Si+5 and Si+6) that
contains the starting address and the length of the firmware
image. Then, the boot-loader programs the data in the memory
from Si+7. Once the last firmware segment is received, the
reset vector is placed at the end of the current memory
segment. Once the execution instruction (three consecutive
EEh) is received, the boot-loader stores the next two bytes of
SPI data in Program Counter to execute the target firmware.

Since our work is the first proof-of-concept evaluation
of wireless reprogramming of CRFID systems, we do not
consider harsh multipath environment. However, in case the
Write command fails, the Reader can, for example resend the
Write command until a “Success” message is received from
the tag.

C. Memory Arrangement

The memory arrangement relates to the mapping of
firmware image segments in accordance with memory seg-
ments of the MCU. In our case, the Opt-WISP and Spider
tags include MSP430F2132 with FLASH memory, whereas
WISP5.1 includes MSP430FR5969 with FRAM which is one
of the latest additions to the MSP family of ultra-low power
MCUs. Broadly speaking, FRAM can be used as a universal
memory for program code as well as variables. Importantly,
there are no specific memory segments and it can be par-
titioned as desired. In our case, firmware images, constants,
variables, stacks and so forth are all allocated in the FRAM. To
reprogram FRAM, we simply need to write the new firmware
image on a specific memory location without performing the
erase operation, as in Flash memories.

The 8 KByte Flash memory in Opt-WISP and Spider tags is
partitioned in 16 segments of 512 bytes, as shown in Fig. 5. To
reprogram, we need to first erase a complete memory segment
followed by the write operation. Also, a reset vector is required
to be placed at the end of each segment. To effectively utilize
the FLASH memory and provide the flexibility of erasing
individual firmware images, R2 places each firmware image
towards the beginning of a FLASH segment.

D. Transition between Active and Power Saving Modes

CRFID tags are power constrained devices that operate in
duty cycle mode to conserve power. The MSP430 series of
MCUs offer one active mode and several software-selectable
low power modes. In brief, all clocks are active in the active
mode, while the CPU is disabled and the RAM is retained
in low power mode (LPM4 mode used in our scheme). For
Opt-WISP and WISP5.1, the execution starts with LPM4
mode and the tag is interrupted to work in active mode once
the communication starts from the reader’s side. If power is
sufficient, the tag will execute the reprogramming operation as
directed. Otherwise tag will set in LPM4 mode until energy
supervisor generates next interrupt. For Spider CRFID tag,
the micro-controller starts from LPM4 mode. In here, the SPI
interrupts the MCU to active mode to perform the desired
operation. Once active, the MCU keeps tracks of power in
line with energy supervisor, and finally moves to LPM4 mode
upon successful completion of the task.

IV. IMPLEMENTATION AND EVALUATION METRICS

We evaluate R2 on three platforms, i.e., WISP5.1, Opt-
WISP and Spider CRFID tags. The Opt-WISP is based
upon the design of WISP4.1DL but it is retrofitted with
two independent antennas and power harvesters. The first
antenna-harvester pair is used for realizing receiving EPC
commands, power harvesting and backscattering operation
similar to WISP4.1DL. The second antenna-harvester pair is
used exclusively for sensing applications. Experimental results
show that, such architecture results to higher output ranges
and high-end sensing capabilities. Moreover, the MCU is fed
with 3.3 VDC instead of 1.8 VDC (as in WISP4.1DL). The
higher MCU voltage is the prime reason that we use Opt-WISP



1

Fig. 6. User Interface passes reprogramming or execution instructions through
commercial RFID reader, receives the tag’s reply and displays the results.

in place of WISP4.1DL because the MCU (MSP430F2132)
requires at least 2.2 VDC to reprogram the FLASH. In case
of Spider tag, the CRFID chip itself provides 3.2 VDC
to the MCU (MSP430F2132). This way, we evaluate R2

on MCUs with two different on-chip memories, FRAM in
MSP430F2132 and FLASH in MSP430FR5969. A Graphical
User Interface based on the software development kit of Impinj
Speedway R420 is developed in C#. To have a comprehensive
evaluation of our system, we evaluate the time delay of overall
system, energy overhead and the success rate in different
interrogation ranges.

A. User Interface

As shown in Fig. 6, the User Interface connects to commer-
cial reader and displays the information regarding the tags in
top left window. Once a specific tag is selected, its parameters
are displayed in Tag Parameters panel. The memory addresses
of the firmwares inside MCU memory are displayed towards
the bottom of this panel in Firmware Address field. The
memory address of boot-loader is displayed within braces
to distinguish from other firmwares, e.g., {0xFA00-0xFFC0}
which shows the starting and ending address of the boot-
loader. To give a graphic illustration, we also portray the
memory addresses of all existing firmwares in Memory Ar-
rangement panel. As shown in bottom right of the figure,
the colored area marks the firmware images, reset vector is
shown at the end of the memory segment while the blank
area indicates the location of empty memory. To execute the
firmware, the user can input the address of intended firmware
in Firmware Execution panel.

For reprogramming operation, the user first needs to select
the desired firmware in Select Firmware Panel. Then, the Over-
the-Air Programming panel provides accessibility to specify
the memory location for the selected firmware that comprising
of Starting Address and Reset Vector fields. This way, a new
firmware can be wirelessly transmitted to a specific memory
location of the tag through Write Command.

Fig. 7. Experimental Setup.
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B. Evaluation Metrics

The evaluation aims to validate following three aspects:
1) Overall System Delay: The overall time delay in repro-

gramming 512 bytes of firmware image as measured on three
platforms (Opt-WISP, WISP5.1 and Spider CRFID tags). The
evaluation includes the time consumption incurred by up-link
and down-link communication, memory reprogramming, CRC
calculation.

2) Time and Energy Overhead: The time delay and energy
overhead once R2 reprograms the memory itself. The evalu-
ation excludes the overhead caused by EPC protocol and is
specific to the boot-loader operating at different MCU clock
frequencies on three CRFID tags.

3) Success Rate and Interrogation Range: We calculate the
success rate in line with interrogation range for all three tags.
The results are compared with FirmSwitch scheme [18].

V. EVALUATION RESULTS

A. Overall System Delay

Since EPC-C1G2 strictly limits the interrogation and reply
timings between the reader and the tag, it becomes important
to evaluate time overhead incurred by R2 during reprogram-
ming operation. In EPC standard, the interrogator maximally
waits for a tag’s reply for 20 ms after issuing the Write
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command. As illustrated in Section III, the tag will backscatter
the “Success” reply only after the reprogramming operation is
executed successfully.

The overall system delay aims to ascertain the validity of
R2 with EPC protocol. The evaluation is performed at an open
place while the distance between the reader and the tag is
kept as 0.5 meter, as shown in Fig. 7. The User Interface is
connected with Impinj Speedway R420 RFID reader with a
circularly polarized antenna with 6dBi gain. The transmission
power is set to 30 dBm. The MCU clock for three CRFID tags
is set to minimum and maximum clock frequencies, i.e., 1 MHz
and 16 MHz. For ease of comparison, we reprogram only
one segment in Opt-WISP and Spider tags, while WISP5.1
is reprogrammed with 512 bytes. The experiment is repeated
for 100 times and results are shown in Fig. 8. The average
response time for Spider, Opt-WISP and WISP5.1 tags at
1 MHz is 28116.68, 13886.33 and 13869.11 ms respectively,
while at 16 MHz the values are 27847.19, 13871.56 and
13842.3 ms. The time delay for Spider tag is roughly double
than other two tags because of the reason that only 8 bits
can be transferred to MCU through SPI interface during each
Write command. We also observe that the clock frequency and
the type of memory have no serious effect on overall system
delay, as we compare the results for Opt-WISP and WISP5.1.

B. Time and Energy overhead by R2

1) Time Delay Measurements: We measure the time con-
sumption incurred by writing different Bytes of data to MCU.
For MSP430F2132, the time is measured at 5 different clock
frequencies: default frequency (1.07 MHz), calibrated frequen-
cies which are 1, 8, 12 and 16 MHz under two conditions; write
the empty FLASH memory directly without initializing; write
the uninitialized FLASH memory after erasing. As shown in
Fig. 9(a), the unfilled markers represent the time consumption
of writing the initialized memory area, while the filled markers
show the time delay introduced by writing the memory after
erasing the specific memory area. However, shown results
pertain to writing a single memory segment. We observe a
significant linear relationship between the time consumption
and the number of bytes written to the memory. In particular,
the time difference between writing with and without erasing
operation is the distance between two lines in Fig. 9(a). The
corresponding difference at 5 clock frequencies is 13.4, 14.3,
1.82, 1.2 and 0.91 ms as annotated in the figure.

For FRAM, we configure the Digitally Controlled Oscillator
(DCO) in MSP430FR5969 and evaluate our system on follow-
ing clock frequencies: 1, 2.67, 3.33, 4, 5.33, 6.67, 8 and 16
MHz. The CPU clock above 8 MHz exceeds the FRAM access
time requirements and therefore a “wait state generator" is



TABLE I
TIME AND ENERGY MEASUREMENTS OF WRITING THE BYTES ON OPT-WISP, WISP5.1 AND SPIDER

Clock Frequency Vin Vout 4V Time (t) Energy
Without Erasing With Erasing Without Erasing With Erasing

Opt-WISP
(2 Bytes)

Default (1.07 MHz) 3.346013 V 3.260247 V 0.085766 V 113 µs 13.5 ms 957.481 nJ 114.389 µJ
1 MHz 3.346012 V 3.263726 V 0.082286 V 121 µs 14.4 ms 984.716 nJ 117.189 µJ
8 MHz 3.346022 V 3.220431 V 0.125591 V 15.4 µs 1.84 ms 188.747 nJ 22.551 µJ

12 MHz 3.346017 V 3.194128 V 0.151889 V 10.1 µs 1.21 ms 148.486 nJ 17.789 µJ
16 MHz 3.346017 V 3.163778 V 0.182239 V 7.68 µs 0.92 ms 134.182 nJ 16.074 µJ

Spider
(1 Byte)

Default (1.07 MHz) 3.163521 V 3.071369 V 0.092152 V 113 µs 13.5 ms 969.173 nJ 115.786 µJ
1 MHz 3.163518 V 3.075104 V 0.088414 V 121 µs 14.4 ms 996.902 nJ 118.639 µJ
8 MHz 3.163524 V 3.026743 V 0.136781 V 15.4 µs 1.84 ms 193.201 nJ 23.084 µJ

12 MHz 3.163516 V 2.998503 V 0.165013 V 10.1 µs 1.21 ms 151.436 nJ 18.142 µJ
16 MHz 3.163522 V 2.966066 V 0.197456 V 7.68 µs 0.92 ms 136.301 nJ 16.328 µJ

WISP5.1
(2 Bytes)

1 MHz 2.216182 V 2.172403 V 0.043779 V 12.8 µs 36.889 nJ
2.67 MHz 2.216181 V 2.163687 V 0.052494 V 4.88 µs 16.796 nJ
3.33 MHz 2.216179 V 2.158987 V 0.057192 V 3.76 µs 14.069 nJ

4 MHz 2.216183 V 2.155213 V 0.060970 V 3.24 µs 12.901 nJ
5.33 MHz 2.216181 V 2.147463 V 0.068718 V 2.48 µs 11.090 nJ
6.67 MHz 2.216174 V 2.131627 V 0.084547 V 1.86 µs 10.158 nJ

8 MHz 2.216188 V 2.124673 V 0.091515 V 1.62 µs 9.545 nJ
16 MHz 2.216185 V 2.103351 V 0.112834 V 1.01 µs 7.264 nJ

required to generate the higher clocks. The resultant system
clock depends upon factors like “cache hit ratio” and settings
of NWAITSx register, the discussion of which is beyond the
scope of our research. For evaluation at 16 MHz, we use
the NWAITSx value of 01b [31]. The results are shown in
Fig. 9(b). We observe that the time consumption for FRAM
in MSP430FR5969 is significantly lower once compared with
FLASH in MSP430F2132.

2) Energy Overhead Measurements: To measure the energy
overhead incurred by reprogramming operation, we use the
same method as used in [32] which is used to measure the
power consumption of WISP4.1DL during encryption process.
We add a series resistor of 33Ω in the power path of MCU in
three CRFIDs and observe the voltage drop across the resistor.
The evaluation is performed for various clock frequencies. The
insets in Fig. 10 highlight the small modification to Spider
tag and WISP5.1, whereas we put a on-board resistor in Opt-
WISP. We first measure the voltage before and after the resistor
which we denote as Vin and Vout using 8846A Digit Precision
Multimeter, the voltage drop caused by the resistor is ∆V . The
power consumption is calculated by

Energy =
∆V · Vout

R
· t. (1)

As the size the firmware can scale and data is transferred
through multiple Write commands for all three platforms,
we evaluate the time and energy overhead of a single Write
command. Table I shows the results for reprogramming the
memory of three CRFIDs for a single Write command. The
maximum time and energy consumption is 14.4 ms and
118.639 µJ while reprogramming Spider CRFID at 1 MHz,
while the minimum values are 1.01 µs and 7.264 nJ when
reprogramming WISP5.1 at 16 MHz. From results in Table I,
we observe that the higher clock frequencies will result in
lower energy consumption and otherwise. Since Spider CRFID
is interfaced to MCU through SPI interface and can maximally
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Fig. 11. Success Rate vs. Interrogation Range.

transfer 1 byte data in a single operation, the time and energy
consumption of Spider CRFID tag is twofold of Opt-WISP.

C. Success Rate vs. Interrogation Range

The success rate is evaluated for single Write command
at an open place and evaluation setup is similar to Fig. 7
as in case of overall system delay. The distance between the
reader and CRFID tag is increased from 0.2 to 4.0 meters
during the course of experiment. We compare our results with
FirmSwitch scheme [18] which uses WISP4.1DL and switches
between multiple pre-programmed firmwares through Write
command using the commercial RFID reader.

The evaluation results are shown in Fig. 11. We observe
that Opt-WISP, WISP5.1 and Spider CRFIDs have better
interrogation ranges than FirmSwitch. There is a sharp decline
in the success rate of FirmSwitch after 0.5 meter because
WISP4.1DL backscatters sensor data as well as pre-calculates
the CRC, which consumes large amount of energy. As Opt-
WISP makes use of an additional antenna-harvester pair
exclusive for sensing/computational tasks, the interrogation



range is increased and observed success rate is higher. In case
of WISP5.1, it uses an optimized and more sensitive power
harvester which increases both the range as well as the success
rate. Spider CRFID tag is analogous to commercial RFID tag
as far as the execution of EPC protocol is concerned, i.e.,
whole EPC protocol is implemented in embedded chip. The
reprogramming operation is realized in the MCU which is
connected through SPI and has no direct relation with the
implementation of EPC protocol. This, in result, offers optimal
tag operation as envisioned.

VI. CONCLUSION

We articulate the design, implementation and evaluation of
R2 scheme that wirelessly reprograms the CRFID tags through
commercial RFID reader. The scheme is fully compatible with
EPC protocol and does not require any hardware upgrade
to CRFID tags or the RFID reader. To this end, system
architecture is explained with an in-depth discussion for two
topologies of CRFIDs including three tags and two kinds
of MCUs. The scheme is realized in the phases of instruc-
tion encoding, decoding, execution and memory arrangement.
Evaluation results show that single reprogramming operation
in R2 introduces a delay of 1.01 µs for WISP5.1 and up to
14.4 ms both for Spider tag and Opt-WISP. For reprogramming
512 bytes at 1 MHz clock, the maximum overall system delay
amounts to 28116.68, 13886.33 and 13869.11 ms for Spider
tag, Opt-WISP and WISP5.1 CRFID tags, and a success rate
of 93%, 89.5% and 84% is achieved for an interrogation range
of 1 meter.
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