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Abstract— Computational RFID (CRFID) tags are an emerging
class of UHF RFID tags, which are capable of communication,
sensing, and computation. However, their computational units are
pre-programmed to execute a specific task and cannot change
their execution flow during runtime. They require a wired
interface to reinstall a new firmware, which strictly limits their
use. We address this issue by remotely changing the behavior of
CRFIDs by switching their firmware during runtime through
commercial RFID reader, without any modification to either
CRFID tags or EPC protocol. We present the design, implementa-
tion, and evaluation of FirmSwitch–a wireless scheme that equips
CRFIDs with the capability of switching amongst pre-installed
firmwares during runtime. To achieve this goal, we wirelessly pass
the encoded instructions to CRFID tag through RFID reader,
which leverages the CRFID tags to switch among firmwares
and execute them for intended cycles. For concept validation,
three prototype tags belonging to two CRFID categories are
evaluated. The results show that FirmSwitch incurs an overall
switching delay of 5–35.7 ms, and a minimal energy overhead of
48.7 nJ–69.3 µJ. The success rate of 95% is achieved at the
interrogation range of a half meter with no retransmission.

Index Terms— Computational RFID, firmware flexibility, exe-
cution control.

I. INTRODUCTION

UNLIKE conventional passive RFID tags, computational
RFID (CRFID) tags feature general-purpose program-

mable MCU, sensing elements and discrete circuits for com-
munication and power harvesting. Broadly speaking, CRFID
tags consist of two major categories: software-defined and
chip-based CRFID tags. The MCU in former executes both
RFID protocol (e.g. EPC C1G2 [1]) as well as auxiliary
operations in software, whereas the latter uses commer-
cial chips to execute RFID protocol and utilizes external
MCU to perform computational and sensing tasks. Based on
WISP as the pioneering CRFID project [2], [3], many other
variants [4]–[6] have been developed on the same design.
Such designs not only extend the capabilities of RFID tags
for sensing and computation [7]–[10], but also open new
opportunities for ubiquitous computing [11]–[14].

A major limitation of current CRFIDs is that they are
restricted to execute only a single firmware during runtime.
In a typical working cycle, the MCU is programmed with
a single firmware for an intended task, once powered up,
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the MCU will perform the computational or sensing task as
per the pre-installed firmware. From a broader perspective,
the working scheme of current CRFIDs is analogous to the
continuous transition of a state machine within a single state
for any firmware, which boots from a predetermined point,
performs the task under a fixed execution routine and finally
returns to the starting point for next round. To change the
functionality of CRFIDs, users have to physically connect
the programming tools with each individual tag and repro-
gram the MCUs. Moreover, the maintenance-free CRFID
tags are mostly deployed in hard to reach places to per-
form the sensing and computing tasks, such as structural
monitoring [15], implanted glucose detection [16], in-flight
moth monitoring [17] and implanted pacemaker control [18].
For such applications, physically accessing the devices
becomes cumbersome, making it infeasible to change the
functionality of CRFIDs after deployment.

In order to equip CRFID tags with the capability to execute
multiple different operations during runtime, a straightforward
way is to combine source codes of all the intended firmwares
as a single firmware and program it in the MCU during
the installation phase. Such solution, however, is not feasible
because of the three reasons: (1) Each individual firmware
requires a certain amount of RAM, therefore, scaling the
firmware size will increase the RAM requirements which can
lead to system failure once RAM is overloaded. (2) CRFIDs
are transient powered devices, the execution of the com-
bined firmware is more likely to be terminated by power
failure [19], [20]. Consequently, the tag will lose its running
state and restart the execution from the beginning of the task.
(3) As the memory of each firmware execution is protected,
it would be infeasible to perform a self-modification during
runtime. In this paper, we present FirmSwitch - a novel scheme
to switch between independent firmwares to provide multiple
functionalities.

A broader concept of FirmSwitch is depicted in Figure 1
in which CRFID is implemented with a boot-loader and
multiple individual firmwares. Upon power-up, the tag starts
its operation from boot-loader and communicates with RFID
reader while following EPC protocol. In case an instruction
to switch a firmware is received, boot-loader reboots to load
and execute the target firmware for intended cycles. Once the
task is successfully executed or the tag is drained of power,
the system resumes from boot-loader.

To realize this idea into a practical solution, the follow-
ing challenges are addressed by the proposed techniques:
(a) In order to load and execute the target firmware, MCU
has to reboot to re-initialize the RAM and consequently the

1558-1748 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WU et al.: REMOTE FIRMWARE EXECUTION CONTROL IN CRFID SYSTEMS 2525

Fig. 1. The firmware execution architecture of current CRFIDs (left) and
proposed FirmSwitch scheme (right).

processing state will be lost. To address this issue, the switch-
ing parameters are saved in the non-volatile memory before
performing the switching operation. (b) CRFID tags work
under transient power and the firmware execution might be
terminated by the power failure. To comply with transiently
harvested power, the MCU of the tag repetitively transits
between active and low power modes for energy conservation
and system reliability. (c) Real-time CRC computation in
CRFID tags might result in a power loss [21]. As a solution,
we employ pre-calculated CRC for energy efficiency and
computational liberty. (d) EPC number of software-defined tag
changes each time the data is sent back (as tags embed their
processed data in 96-bit EPC field to save power). In result,
the reader foresees each 96-bit sensed data as a new tag ID.
We address this issue by allocating a unique pre-defined EPC
to each tag so that reader can recognize CRFID tags during
interrogation.

We demonstrate our scheme by implementing a pro-
totype on two types of software-defined tags (WISP5.1,
Opt-WISP) and a chip-based tag (Spider). At the system level,
we evaluate the time delay incurred during switching to an
intended firmware. We also evaluate the energy consumption
of the switching operation at different MCU clock frequencies.
To validate the system efficiency, we evaluate the success rate
of our system at different interrogation ranges.

In summary, we believe that FirmSwitch can considerably
reduce the deployment and maintenance overheads for CRFID
systems. Following are the key contributions:

• FirmSwitch is a wireless firmware switching approach
conforming to EPC protocol so that it requires no modi-
fications to either commodity reader or CRFID tags.

• It equips CRFID tags with execution flexibility whereby
the user is able to execute the pre-installed firmwares
during system runtime.

• It is light-weight in terms of computation, communication
time and power consumption.

• Our system transfers between active and several low
power modes so that the switching and execution can
still work even if the power failure occurs.

II. RELATED WORK

To best of our knowledge, FirmSwitch is the first approach
to offer firmware execution flexibility for CRFID tags

through wireless medium using RFID reader and EPC
protocol. We only find several relevant works which are
specific to MSP430 series of MCUs and tend to manage the
firmware execution. Ransford et al. presented an energy aware
scheduler [20]. It maps the harvested voltage with appropriate
firmware to execute. The selection of new firmware is based
upon the extent of energy it utilizes. However, the scheme
is restricted only to energy aware scheduling and users does
not have the flexibility to select a specific firmware as per
the requirement. In Bootie [22], the author presented a pre-
programmed look-up table scheduler. The MCU follows a
pre-defined look-up table to execute the tasks in a cycle.
DewDrop [23] optimizes the efficiency of task execution by
means of adapting the execution to the harvested energy.
Mementos [24] enables the CRFID tag to complete the long
running computations by breaking a single firmware into
interruptible executions.

Inspired by WISP [2], many software-defined CRFID plat-
forms have been developed. SoCWISP [25] is a wearable
CRFID chip to collect biomedical signals from in-flight
insects. Blue Devil WISP [26] adopts a v-shape antenna and
improves the performance of power harvesting and communi-
cation. EEGWISP [7] is used for collecting EEG signals from
the brain. Moo [15] upgrades the MCU for larger memory
and collects strain and temperature data from the CRFID
tags buried in concrete structures. Moreover, many other
designs like WISPs/g [27], WISPCam [28], H-WISP [29],
SolarWISP [19] and FrankenWISP [8] are also developed.
Besides these software-defined CRFID platforms, we find
several commercial chips used in chip-based CRFID tags.
These chips include Andy100 [30] by Farsens and SL-series
of chips [31] from AMS AG. The former is used to sense
data and interact with a mobile robot [32], while the latter
is used for temperature and motion detection [33] and soil
moisture monitoring [34]. All such platforms will benefit from
the firmware flexibility provided by FirmSwitch.

Various approaches have been presented for CRFIDs as far
as data transmission, firmware storage and other functionalities
are concerned. Harmony [21] pre-calculates the CRC to save
harvested energy and execution time. Wisent [35] wirelessly
transfers the firmware image to WISP5 through BlockWrite
command. Authors proposed a scheme [36] to enhance the
security of proximity cards with CRFID enabled secret hand-
shakes. Several techniques are presented in Half-wits [37]
and FERNS [38] allowing efficient storage and secure data
transfer between a CRFID tag and the commercial reader.
Several methods aim to improve the data throughput, for
example, Flit [39] utilizes the idle slots and transfers short
packets in burst, and BLINK [40] leverages the package loss
rate and RSSI. Schemes like [41]–[43] implement encryption
algorithms on CRFID tags for security. Authors proposed an
access control method [44] by making use of electronic and
mechanical authentication.

III. FIRMSWITCH DESIGN APPROACH

We realize FirmSwitch in form of Firmware Arrangement
at deployment phase, Instruction Encoding on the top of
EPC protocol and Decoding and Execution on the tag side.
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Fig. 2. Firmware Arrangement step compiles boot-loader and individual
firmware images to on-chip memories. By default, the execution starts from
the address contained in 0xFFFE.

The Firmware Arrangement step is to allocate tag memory
to boot-loader, firmware images and their corresponding reset
vectors during deployment phase. At reader side, the user
can select a target firmware and specify the intended exe-
cution cycles through Instruction Encoding step in which
the reader embeds the switching parameters inside Write
command to perform the switching operation. Towards the tag
side, the Decoding and Execution process communicates with
reader while following the EPC protocol, saves the switch-
ing parameters when the switching instruction is received,
and reboots to load and execute the target firmware for
intended cycles based on the parameters parsed from switching
instruction.

A. Firmware Arrangement
To make effective use of on-chip memory and provide

flexibility for firmware switching and any envisaged wireless
reprogramming, the Firmware Arrangement step places boot-
loader, firmware images, reset vectors in specific regions
based on the storage medium of MCU. Current versions
of CRFID tags comprise either FLASH based MCU (e.g.
MSP430F2132 for Opt-WISP and Spider) or FRAM based
MCU (e.g. MSP430FR5969 for WISP5.1). By default, when-
ever the system is powered-up, the program counter in both
FLASH and FRAM based MCUs will point to the reset vector
located at 0xFFFE, and the CPU starts execution from the
address contained in the reset vector. For both types of MCUs,
we leverage this feature for system stability and place the
reset vector of boot-loader at 0xFFFE, as shown in Figure 2.
As a result, whenever the tag is powered on for the first
time or encountered a power outage during execution, it will
always start its execution flow from the boot-loader, and
system will not be left in unstable stage.

For FLASH-based MCU, the FLASH memory is divided
into segments of 512 bytes whereby each segment is also
the smallest unit of data erasure [45], [46]. To write FLASH
memory, the complete 512-byte segment has to be erased
before writing operation. During Firmware Arrangement,
we stipulate that every firmware should be placed from the
beginning of the first memory segment (0xE000). The reset
vector of each firmware is stored towards the end of last

TABLE I

COMPARISON OF THREE TYPES OF NON-VOLATILE MEMORIES

FLASH segment. Different from FLASH memory, FRAM can
be programmed or rewritten in a byte-wise fashion without
erasing [47], [48]. As FRAM has no specific memory segmen-
tation, firmwares are placed followed by their reset vectors.
Hence, all firmware images (along with their reset vectors)
can be stacked one by one starting from address 0x4400 till
0x13FFF.

When the switching instruction (discussed in Section III-B)
is received, the boot-loader will move the relevant reset
vector address of the target firmware image to the program
counter. In this case, system will reboot to initialize the
execution for the target firmware.1 As a result, switching
parameters received from reader will be lost after the system
reboot. To address this issue, switching parameters include the
reset vector address of target firmware (Addr ) and execution
cycles (N) are saved in the non-volatile memory so that the
tag can load them after performing the switching operation.
Moreover, as CRFID tags need to frequently update N when-
ever the execution is complete or a new switching instruction
is received, the switching parameters should be saved in
the non-volatile memory that incurs the minimum overhead.
In CRFID systems, non-volatile memories include on-chip
memories like FLASH and FRAM, and off-chip memory like
EEPROM. A comparison is shown in Table I. Compared with
FLASH, EEPROM performs better as it not only requires
lower supply voltage but also incurs less time overhead in
updating the parameter. Therefore, for tags with FLASH
based MCUs, the switching parameters are saved in the off-
chip EEPROM. On the contrary, for tags with FRAM based
MCUs, the switching parameters are saved in on-chip FRAM
because data accessing speed of FRAM is significantly higher
than that of EEPROM. As a result, for FRAM based MCU,
a 4-byte memory space is reserved followed by the boot-loader
to maintain the switching parameters.

B. Instruction Encoding on Reader Side

In FirmSwitch, we use Write command to pass our switch-
ing instructions to the tag. Typically, the instruction includes
switching indicator, target firmware address and number of
execution cycle.

For software-defined CRFID tags, the parameters are
embedded in the MemBank, WordPtr and Data field of
Write command. Unlike commercial tags, the software-defined
CRFIDs execute EPC protocol inside it MCU and do not
have four separately addressable banks (User, TID, EPC

1During initialization, the interrupt vector table, global and static variables,
and functions that are purposely designed to be executed from RAM will be
copied to the RAM in a sequential order. After that, the program counter
points to the entry of the main function and the execution begins.
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Fig. 3. Switching instruction for software-defined CRFID tags.

Fig. 4. Switching instruction for chip-based CRFID tags.

and Reserved banks). Therefore, the parameter saved in the
MemBank can be used as a flag to distinguish routine Write
command (coded as 00b) from switching instruction (11b)
as shown in Figure 3. In case MemBank=11b, the following
WordPtr stores reset vector address of the target firmware,
while Data field illustrates the number of intended execu-
tions (N). Particularly, Data=0000b indicates that the target
firmware should be executed continuously until the power is
totally drained.

For chip-based CRFID tags, the commercial RFID chip
communicates with external MCU through Serial Peripheral
Interface (SPI). However, due to the internal architecture of
the commercial RFID chip, it communicates with external
MCU only when the MemBank field is specified as User
Memory (i.e. MemBank = 11b). Moreover, at one time, only
the least significant 8 bits of Data field are transferred to MCU.
Therefore, the switching instruction is encoded through the
following procedure: we define Ti as the i th data that is
transferred from the commercial RFID chip to off-chip MCU.
As illustrated in Figure 4, the switching indicator is defined
as Tn‖Tn+1‖Tn+2 = F Fh‖F Fh‖F Fh while the number of
executions and reset vector address of the target firmware is
contained in Tn+3‖Tn+4 and Tn+5‖Tn+6, respectively.

C. Decoding and Execution on Tag Side

Till this step, we have embedded the intended firmware
images inside tag’s on-chip memory during Firmware
Arrangement step. Therefore, once the reader encodes the
instructions during Instruction Encoding step and passes them
to the tag, the Decoding and Execution process will select the
firmware based upon its address, and execute it for the spec-
ified cycles. Moreover, we highlight that our system operates
among various power saving modes due to the transient power.
To further conserve power, for software-defined CRFID tags,
we make use of pre-defined EPC and pre-calculated CRC.

1) Decoding and Execution: Software-defined CRFID tags
decode the EPC commands and parse the parameters inside

their MCUs. On the other hand, chip-based CRFID tag
decodes the instructions inside its chip and transfer informa-
tion to external MCU through SPI. Therefore, the processes
of instruction decoding and execution for software-defined and
chip-based CRFIDs are different.

In case of software-defined CRFID tags, the system will
initialize with boot-loader and wait for reader’s instructions.
Once a Write command is received, the boot-loader will parse
MemBank, WordPtr and Data fields and store them in the
variables Indicator , Addr and N after validating the CRC.
For Indicator=00b, boot-loader continues to run EPC pro-
tocol. For Indicator=11b, if the CRFID tag embedded with
FRAM based MCU, the boot-loader will save Addr and N
into the on-chip FRAM at the specified address (0xFFF0-
0xFFF3). Otherwise, if the CRFID tag embedded with FLASH
based MCU, the boot-loader will save N to the specific
place (first four bytes) in the off-chip EEPROM. Only when
the FRAM writing completes or the EEPROM writing suc-
ceeds, the target address would be moved to program counter.
After that, boot-loader reboots to load the target firmware.
Once the firmware is loaded, it reads N and keeps the
track of number of successful executions. As a result, N is
updated to N −1 for each successful execution. After N times
of successful executions, the tag will set program counter
to 0xFFFE to load the boot-loader and wait for the next
instruction.

In case of chip-based CRFID tags, once the SPI com-
munication is initialized, the boot-loader receives the data,
labels the i th 8-bit as Ti and saves it in the RAM. Once
the switching indicator (Tn‖Tn+1‖Tn+2 = F Fh‖F Fh‖F Fh )
is received, the boot-loader will write the next two bytes
Tn+3‖Tn+4 to the specific address to maintain the number of
executions based on the memory type of its MCU, while the
following two bytes, (Tn+5‖Tn+6), will be moved to program
counter to perform the switching operation.

2) Transition Between Active and Low Power Modes: The
MSP430 series of MCUs provide two types of operating
modes: Active Mode (AM) and software selectable Low Power
Mode (LPM). The Low Power Mode is further categorized in
five types: LPM0 to LPM4, which offer various functionalities.
In FirmSwitch, the MCU moves between active and low power
modes depending upon interrupts generated by the energy
supervisor or peripheral devices.

As shown in Figure 5(a), the software-defined CRFID
tags power up from LPM4 (Step-1). When sufficient power
is harvested and energy supervisor generates an interrupt,
the system enters into LPM1 (Step-2) and checks the energy
supplied to the MCU. If the power is enough for active mode,
the MCU enters AM and gets N from non-volatile memory
to check whether the previous firmware execution is com-
pleted or not (Step-3). If N = 0, system goes into LPM4 and
waits for a hardware trigger to indicate the command from
the reader (Step-4). Upon receiving the command and having
adequate power, the system moves in AM to process the
instructions following EPC protocol (Step-5). System moves
back to LPM4 to wait for command from reader if it does
not receive the switching instruction (Step-4). If the switching
instruction is received in step-5, system will go through
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Fig. 5. Illustration of FirmSwitch transition between Active Mode and various Low Power Modes. (a) Transition in software-defined CRFIDs. (b) Transition
in chip-based CRFIDs.

Step-6 and Step-7 to save the switching parameters Addr
and N in the non-volatile memory and reboot to switch to
the target firmware. Then, once the target firmware is loaded
into the RAM, it goes into AM to get N from non-volatile
memory (Step-8) and execute the firmware (Step-9). In the
event where N = 0, the execution cycle in the switching
instruction is zero (continuous mode), firmware executes con-
tinuously until energy drains. Otherwise, upon completion,
system updates N in Step-10 and backs to Step-9 if N �= 0.
After executing for intended cycles, system returns to Step-1 to
initialize boot-loader and moves in LPM4. If N �= 0 in Step-3,
system moves to Step-7 to switch to last target firmware and
executes it based on the Addr and N stored in the non-volatile
memory. For the case once the harvested power is completely
drained during the transition, system will restart from Step-1,
same as power-on reset.

For chip-based CRFID tags, once sufficient power is har-
vested, the CRFID chip executes EPC protocol and supplies
auxiliary power to the external MCU. As shown in Figure 5(b),
once the off-chip MCU is powered up, it loads boot-loader
and checks the last execution status in AM (Step-1 and
Step-2). If the last execution is completed, system moves to
LPM4 and waits for SPI interrupt (Step-3). When the RFID
chip initializes the SPI communication and transfers data to
MCU through SPI, the MCU moves to AM to process the
SPI data (Step-4). If the switching instruction is received,
MCU stays in AM and saves the reset vector address of
target firmware and execution cycles in the non-volatile mem-
ory (Step-5). Then, MCU moves to Step-6 to switch to the
target firmware. After loading the target firmware into RAM,
MCU gets N from the non-volatile memory (Step-7). When
N = 0, MCU executes the firmware (Step-8) continuously
until power finishes. Otherwise, MCU updates N to N − 1
(Step-9) after each successful execution (Step-8). Once N
decreased to 0 in Step-9, MCU returns to Step-1 to load the
boot-loader. Similar to software-defined CRFID tags, if MCU
observed N �= 0 in Step-2, which indicates the last firmware
execution is not completed, system will move to Step-6 to
switch to the target firmware and execute for the rest number
of cycles. In case the power is totally drained, the system
restarts from Step-1.

3) Pre-Defined EPC and Pre-Calculated CRC: Commer-
cial RFID tags backscatter their 96-bit unique and reserved
EPC number or TID during Inventory Round. In contrast,
current software-defined CRFID tags embed their sensor data
within 96-bit of EPC field, and communicate it during Inven-
tory Round of EPC protocol instead of Access Round (using
Read command). This way, the Tag-ID (EPC number) changes
each time the tag replies the sensed or computed data. As a
result, the RFID reader foresees each new data (EPC field) as
a new RFID tag. We resolve this issue by allocating a unique
pre-defined EPC value for each software-defined CRFID
token. Normally, current software-defined CRFID tags embed
the sensor data in the 96-bit EPC field using a pre-determined
format. The 96-bit EPC field comprises the sensor type
ID (8 bits), sensor data (64 bits), the hardware version (8 bits)
and the hardware serial number (16 bits). For example, the sen-
sor type ID is 0x0F for temperature data and 0x0B for accel-
eration data. In our approach, to differentiate the pre-defined
EPC from the sensor data, an 8-bit unique header (0xFF) that is
different from the sensor type ID is utilized at the beginning of
each pre-defined EPC number. The tag replies its unique pre-
defined EPC number (e.g. FFFF0000000000000000FFFFh

in Figure 6) to indicate that it is free to receive any instruction
from the reader, i.e., the boot-loader is functional. Therefore,
the reader will only send the switching instructions once the
pre-defined EPC number is received. Otherwise, a changing
EPC number indicates that the tag is executing some firmware
and backscattering the sensed or computed data.

During Inventory Round and Access Round in EPC proto-
col, another caveat arises once the software-defined tags are
required to compute the CRC value during runtime. In EPC
protocol, the CRC computation is a mandatory operation
in reply to ACK, Req_RN and access command such as
Write, Read and Lock. For chip-based CRFID tags, the CRC
computation is performed by commercial chip instead of the
external MCU. On the contrary, software-defined tag has to
perform the CRC computation inside its MCU. Because of low
computational capability and power constraints, computing
CRC in MCU during runtime would incur a considerable
overhead in both time and energy. In the worst case, the CRC
computation might result in a power failure. We resolve this
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Fig. 6. User Interface passes switching parameters to CRFID tag through RFID reader, receives the reply and displays the results.

issue by employing pre-calculated CRC. As the name sug-
gests, the CRC is calculated beforehand, i.e., while program-
ming the tag before its deployment. Following this approach,
we pre-compute the CRC values for pre-defined EPC, Handle
and Success and store them in a list which will be used to
reply ACK, Req_RN and Write commands, respectively. The
tag will select respective CRC value from this list and append
it in the reply to the command.

IV. IMPLEMENTATION AND EVALUATION METRICS

We implement and evaluate FirmSwitch on two software-
defined CRFIDs (WISP5.1, Opt-WISP) and a chip-
based CRFID (Spider). WISP5.1 is embedded with
MSP430FR5969 while the Opt-WISP includes MSP430F2132.
The Opt-WISP is designed based on WISP4.1 with
additional antennas and harvesters. In case of Spider
tag, it uses a commercial CRFID chip (ANDY100) to
execute EPC protocol, and MSP430F2132 is interfaced as its
external MCU. For evaluation, we develop a user interface
for Impinj Speedway R420 RFID reader.

A. User Interface
The user interface is shown in Figure 6, it connects to

commodity RFID reader and passes switching parameters
to CRFID tags. It also receives the backscattered CRFID
tag’s and displays the EPC number in the left window.
The requisite information of the selected tag including EPC
number, tag type, and existing firmwares with its name and
address, appears in the Tag Information panel. To give a better
illustration of the firmware arrangement, a graphic memory
map that marks the boot-loader, firmware images and their
reset vectors is shown in Memory Information panel on the
right side. Users can pass the switching parameters from host
PC to RFID reader through Firmware Switching panel.

User Interface also illustrates the pre-defined EPC and
the data sensed by the tag. Once powered up, the boot-
loader is loaded by default. In this case, the pre-defined
EPC value is visible at 0.327 and 0.844 sec. We then instruct
the CRFID tag to switch to the temperature sensing firmware
and execute it for 5 times. Next five subsequent changing
EPC values (from 1.386 to 3.650 sec) give us the sensed

temperature values. Upon completion, the CRFID tag loads
the boot-loader again and backscatters the pre-defined EPC
number (4.260 and 4.840 sec). Following the same procedure,
we instruct the CRFID tag to switch to the acceleration sensing
firmware for 10 cycles (6.011 to 13.371 sec), as annotated in
the figure.

B. Evaluation Metrics
We evaluate our system at an outdoor place and the eval-

uation is aimed for switching time, energy consumption and
success rate in line with interrogation range.

• Overall System Delay: The overall system delay incurred
by FirmSwitch. The evaluation includes the time con-
sumption caused by the uplink and downlink communi-
cation. This also checks the conformance of FirmSwitch
to EPC protocol with commercial RFID reader.

• Energy Overhead of Switching Operation: The energy
overhead is measured once FirmSwitch switches from
boot-loader to another firmware. The evaluation is per-
formed for three clock frequencies: 1, 8 and 16 MHz.
It excludes the overhead caused by EPC protocol and
is specific to the switching operation (setting program
counter and saving switching parameters) at different
MCU clock frequencies.

• Success Rate and Interrogation Range: We calculate the
success rate of switching operation in line with interro-
gation range for three tags, and for comparison, we also
our results with EPC transmission [21].

V. EVALUATION RESULTS

A. Overall System Delay

In this evaluation, we check the conformity of our scheme
with EPC protocol and use commercial RFID reader for
experimentation. As shown in Figure 7, the overall system
delay is evaluated in the university campus while the distance
between CRFID and reader antenna is kept at 0.5 meters.
We control Impinj Speedway R420 RFID reader through User
Interface, use a circularly polarized 6 dBi antenna and set
the output power to 30 dBm. The working frequency of three
tags is set to 1 MHz and each tag is programmed to switch to
execute a LED firmware, i.e., the tag starts from boot-loader,
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Fig. 7. Experimental setup for overall system evaluation.

Fig. 8. Overall system delay incurred by FirmSwitch on three platforms.

loads a LED firmware and light on the LED. The time delay
is measured from the start of the first command send by the
reader till the LED is turned on. The experiment is performed
for 100 times and the results are shown in Figure 8. The
average time delay of WISP5.1, Opt-WISP and Spider tags
is 5.04, 18.17 and 35.69 ms respectively as annotated.

We observed that the delay for chip-based CRFID
tag (Spider) is significantly higher than software-defined
tags (WISP5.1 and Opt-WISP). This is because reader has to
send multiple Write commands to chip-based CRFID tag for
switching from boot-loader to the target firmware. We also
observed that the tags equipped with FLASH-based MCU
(Opt-WISP and Spider) consume more time compared with
the tag with FRAM-based MCU (WISP5.1). The reason is that
FLASH-based MCU saves the switching parameters (Addr
and N) into external EEPROM, which consumes much more
time for reading and writing compared with FRAM-based
MCUs which saves the parameters in FRAM. However,
we find that the overall system delay introduced by Firm-
Switch is acceptable and our system is fully compatible with
EPC protocol and commercial RFID reader.

B. Energy Overhead of Switching Operation
As the energy consumption is a critical parameter for power

harvesting designs. The situation for CRFID tags is more

TABLE II

TIME AND ENERGY MEASUREMENT FOR FRAM-BASED MCU

serious as a commercial tag typically operates at 150 μW
power whereas only the MCU in WISP-CRFID consumes
power in amounts of 960 μW [49]. Therefore, we evaluate
energy overhead of switching operation on all three platforms.
Due to the different working schemes or MCU architectures,
the typical firmware that can work on one platform usually
cannot work on the other. For ease of comparison, three
platform-independent firmware demos [50] are used to eval-
uate the time and energy overhead. The evaluated firmwares
include RC-5 encryption, CRC-16 calculation, and LED blink-
ing Demos with firmware size of 4.5, 2.2, and 0.8 KBytes,
respectively. We instruct each tag to switch to one firmware
at various clock frequencies (1, 8 and 16 MHz). For mea-
surement, we follow the method of measuring the power
consumption of WISP4.1 [51] and put a series resistor of 33 �
in the power path of the MCU to measure the voltage drop
across the resistor, as shown in Figure 9. The voltage before
and after the resistor is denoted as Vbefore and Vafter. We use
MCU’s GPIO P3.0 as a flag and view its output as a voltage
wave on the oscilloscope. The toggling of flag before and after
the switching operation indicates that the switching operation
has started and completed. The energy overhead is given as

Energy Overhead = Vafter · (Vbefore − Vafter)

R
· T, (1)

where R is the 33 � resistor while T represents the time
consumption of the switching operation.

The energy consumption of switching operation for tag with
FRAM based MCU is shown in Table II. The results show a
maximum energy overhead of 5397.7 nJ for switching to RC-5
encryption Demo firmware at 1 MHz, and a minimum energy
overhead of 48.7 nJ for switching to LED blinking Demo
at 16 MHz. We observe that lower MCU clock consumes
more power than higher clock frequencies. The relationship
between energy and system frequency is quite understandable.
As frequency is increased from 1 to 16 MHz, the number
of computations per second also increases, which in result,
reduces the operation delay. Since all three firmwares differ
in number of variables and execution flow, the time delay as
well as energy consumption varies for each. Moreover, based
on the results of three target image at same clock frequency,
we found that the increase in the size of the target firmware
image results in the increase in time and energy consumption.

For tags with FLASH based MCU, the switching parameters
are saved in the off-chip EEPROM. However, in practice,



WU et al.: REMOTE FIRMWARE EXECUTION CONTROL IN CRFID SYSTEMS 2531

Fig. 9. Experimental setup for energy measurements on Opt-WISP, WISP5.1 and Spider. (a) Circuit Diagram. (b) Opt-WISP. (c) WISP5.1. (d) Spider.

TABLE III

TIME AND ENERGY MEASUREMENTS FOR FLASH-BASED MCU

the off-chip EEPROM should operate up to its own maximum
clock frequency. For example, the maximum clock frequency
of Microchip 24AA08 [52] used in our system is 400 kHz
when the supplied power (Vafter) is above 2.5 V, and 100 kHz
when Vafter is lower than 2.5 V. Therefore, to reliably and
quickly save and get the switching parameters, the EEPROM
is operating in a fixed clock frequency (400 kHz) with Vafter
for both Opt-WISP and Spider are higher than 2.5 V. The
time and energy measurements for FLASH based MCU are
shown in Table III. The Clock in the table indicates the
working frequency of other MCU operations such as decoding
switching instruction, setting the program counter and loading
the target firmware image. The results show that, for a certain
target image, the energy consumption are similar at certain
clock frequencies.

Comparing the results of FLASH based MCU and
FRAM based MCU, we found that the former consumes more
time and energy in switching to a certain target image at same
clock frequency than the latter. Moreover, because of different
MCU memories, the energy consumption in WISP5.1 and Opt-
WISP differs even though both tags belong to the same family
of software-defined CRFIDs. In addition, we observe that the
energy overhead is higher when the working frequency is
lower for all three platforms.

C. Success Rate and Interrogation Range

In our scheme, the switching instruction is embedded in the
Write command and sent through commercial reader. However,

Fig. 10. Success rates at different interrogation ranges.

as CRFID tags are transient powered devices, the harvested
power might drain before the switching operation is performed
successfully. To validate the performance of our scheme,
we evaluate the success rate of the switching operation on
WISP5.1, Opt-WISP and Spider at different interrogation
ranges.

The success rate is evaluated at an open playground and the
experimental setup is similar to Figure 7. In this evaluation,
we use the LED blinking Demo as the target firmware for
ease of observation. During the experiment, the success rate
is evaluated for 200 independent switching instructions with
no retransmission for each distance. For comparison, we fur-
ther evaluate our system against Harmony [21] which uses
WISP4.1DL and executes the EPC protocol till Access Round
to backscatter the sensor data with pre-calculated CRC.

The results are shown in Figure 10. Our approach achieves
a success rate of 95% at 0.5 meter on all three platforms. With
a more practical interrogation distance of 2 meters, the success
rates are still higher than 60%. In practice, RFID reader can
retransmit the switching instruction if the instruction is not
received and decoded correctly. Compared with Harmony,
WISP5.1, Opt-WISP and Spider tags show better success rates
and interrogation range. The success rate of Harmony falls
sharply after 0.5 meter and the maximum interrogation range
is 2.5 meters, while the success rate of WISP5.1, Opt-WISP
and Spider decreases gradually and the maximum interrogation
range is over 3.5 meters.

Our scheme competes with Harmony because of following
reasons: For WISP5.1, an optimized power harvester is used
which increases the interrogation range and success rate. For
Opt-WISP, the additional power harvester is used exclusively
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for computation, therefore, the interrogation range and success
rate outperforms WISP5.1. For Spider tag, since the EPC pro-
tocol is executed by a commercial chip which offers optimal
tag operation, the interrogation range and success rate are the
highest among all three platforms.

VI. CONCLUSION

We present the design, implementation and evaluation
of FirmSwitch, a scheme enabling wirelessly switching the
firmwares on CRFIDs and executing them for intended cycles.
The user compiles all firmwares in a once-for-all fashion
during the deployment phase which can be switched back and
forth during system runtime through commercial RFID reader
and the EPC protocol. To this end, an in-depth discussion is
presented for three phases of FirmSwitch: Firmware Arrange-
ment, Instruction Encoding, and Decoding and Execution.
We implement FirmSwitch on WISP5.1, Opt-WISP and Spider
CRFID tags and evaluate the performance of our scheme in
terms of switching time, energy cost and interrogation range.
The evaluation results show that FirmSwitch is a viable and
practical approach for firmware flexibility in CRFID systems
without any modifications to CRFID tag, commodity RFID
reader or the EPC protocol.

In future, the successful interrogation range of our approach
can be optimized by improving the energy harvesting effi-
ciency of the CRFID tag and reducing power consumption in
the tag’s physical structure. Moreover, we consider our work
to be an elementary step towards “over-the-air programming".
Once a CRFID can reliably receive a firmware image and
rewrite the MCU, this work can be extended to wirelessly
receive, load and execute new firmwares without any wired
access.
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