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Benefitting from the maturation of Wireless Power Transfer technology, Wireless Rechargeable Sensor Net-

works have become a promising solution for prolonging network lifetime. In practical charging scenarios, ob-

stacles are ubiquitous. However, most prior arts have failed to consider the combined impacts of the material,

size, and location of obstacles on the charging performance, making these schemes unsuitable for real appli-

cations. In this article, we study a fundamental issue of Wireless chArger placement wIth obsTacles (WAIT),

that is, how to place wireless chargers by comprehensively considering these parameters of obstacles, such

that the overall charging utility is maximized. To tackle the WAIT problem, we first build a practical charging

model with obstacles by introducing shadow fading, and conduct experiments to verify its correctness. Then,

we design a piecewise constant function to approximate the nonlinear charging power. Afterwards, we de-

velop a Dominating Coverage Set extraction algorithm to reduce the continuous solution space to a limited

number. Finally, we prove the WAIT problem is a maximizing monotone submodular function problem, and

propose a 1−1/e−ε approximation algorithm to address it. Extensive simulations and field experiments show

that our scheme outperforms comparison algorithms by at least 20.6% in charging utility improvement.
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1 INTRODUCTION

Wireless Power Transfer (WPT) technology [20] has witnessed significant breakthroughs in re-
cent years because of advantages of no-wiring, no-contact, and ease of maintenance. WPT allows
energy to be delivered wirelessly from a transmitter to a receiver through electromagnetic waves.
Exploiting the WPT technology helps construct the Wireless Rechargeable Sensor Networks

(WRSNs) [18, 26, 28, 46]. For example, we can place wireless chargers at the appropriate loca-
tions in the WRSNs to provide continuous and stable power supply for the rechargeable sensors
wirelessly. Owing to the fact that WRSNs greatly alleviate the energy limitation problem in Wire-

less Sensor Networks (WSNs) [30], they have been widely used in many fields, such as animal
protection, healthcare, ecological environment detection, and so on [12, 29, 36, 44].

In practical charging scenarios, obstacles of arbitrary shapes and materials are ubiquitous. For
example, in outdoor environments, where wildlife is monitored, trees, and stones are distributed.
Similarly, in indoor environments, where temperature and humidity are monitored, there will
inevitably be walls, glass, and furniture. According to the electromagnetic wave theory [4],
electromagnetic waves can penetrate various obstacles (e.g., walls, trees, and glass) with different
attenuation coefficients. Unfortunately, most traditional charger placement studies either ignore
the existence of obstacles [7, 9, 10, 22, 50] or assume that electromagnetic waves cannot penetrate
obstacles [21, 42, 47], which conflicts with the real environment. Recently, although a few work
[23, 24] have considered the influences of obstacles on the propagation of electromagnetic waves,
and established a charging model based on the Fresnel diffraction model to calculate the energy
strength of the areas blocked by obstacles. However, this diffraction model is only suitable for
metal obstacles. Besides, only when the sizes of the obstacles/apertures are comparable to the
wavelength of wave, diffraction is observable. Nevertheless, in practical charging scenarios,
obstacles of various materials have different penetration coefficients, and it is also impossible for
all these obstacles to meet the above conditions in size. As a result, the applicability of existing
methods is rather limited in practical scenarios.

To demonstrate the influences of the material, size, and location of obstacles on the propagation
of electromagnetic waves, we conduct a testbed experiment by using the off-the-shelf TX91501
wireless charger produced by Powercast [34]. Figure 1 depicts the energy strength heatmap of the
2D plane with obstacles made of bricks and wood. It can be seen that these obstacles cannot com-
pletely block the propagation of electromagnetic waves, and the areas behind obstacles can still
receive non-negligible energy. In the framework of electromagnetic wave theory [4], a major fac-
tor affecting the blocking effect of obstacles is the material of the obstacles. In particular, obstacles
made of conducting materials, such as metal, will completely block the propagation of electromag-
netic waves. However, when the electromagnetic waves encounter obstacles of insulator materials,
they will penetrate these obstacles with different attenuation coefficients. As shown in Figure 1,
the energy strength of the area blocked by the 5-cm-thick wooden board is significantly stronger
than that of the area blocked by the wall with the same thickness. Another factor that affects the
propagation of electromagnetic waves is the thickness of obstacles. From Figure 1, we can see
the 10-cm-thick brick has a stronger blocking effect than the 5-cm-thick wall. This phenomenon
shows that the thicker the obstacles, the stronger the blocking effect on electromagnetic waves.
Hence, to achieve efficient wireless charging in real applications, it is essential to build a practical
charging model with obstacles taking the material, size, and location of the obstacles into account,
to obtain the eventually received energy by each sensor.

In this article, we focus on the problem of Wireless chArger placement wIth obsTacles

(WAIT). Formally, given a number of rechargeable sensors with fixed positions distributed on a
2D plane where obstacles of arbitrary shapes and materials exist, the WAIT problem is to place a
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Fig. 1. A testbed experiment to explore the energy strength distribution when there are obstacles on the

plane. An omnidirectional wireless charger is located at the center of the plane. Obstacles made of bricks

and wood are distributed around the charger. The thickness of the vertical and horizontal walls are 5 cm

and 10 cm, respectively. The thickness of the wooden board is 5 cm. We divided the whole experimental

area into 10 cm × 10 cm grids and placed the sensor in each grid in turn to record the received energy

strength.

limited number of omnidirectional wireless chargers on the plane, i.e., to determine their positions,
such that the overall charging utility of all the sensors is maximized. Generally, we face several
inherent challenges in solving the WAIT problem.

The first challenge is to build a practical charging model with obstacles. To choose appropriate
positions for chargers, we need to know how much energy each sensor can be obtained no matter
where the chargers are placed. Since the material, size, and location of obstacles all have signifi-
cant impacts on the propagation of electromagnetic waves, it requires us to model the charging
environment with obstacles by jointly considering these parameters, to obtain the electromagnetic
wave intensity of the areas blocked by obstacles.

The second challenge is that the WAIT problem is nonlinear and continuous. WAIT is nonlinear,
because the received power is nonlinear with charging distance, which makes our objective (i.e.,
charging utility) nonlinear. WAIT is continuous, because the positions available for charger place-
ment are continuous values, which implies there are an infinite number of candidate placement
positions.

To address these challenges, we introduce shadow fading [4] to formalize the influences of ob-
stacles on electromagnetic wave propagation, and further combine the Friis’s free space model to
build our practical charging model with obstacles. We carry out extensive testbed experiments to
verify the correctness of this model. For the second challenge, to tackle the problem of charging
power is nonlinear with distance, we design a piecewise constant function to approximate the
nonlinear charging power with bounded energy error ε guarantee, and further divide the whole
area into multiple subareas. In order to tackle the problem of continuous search place, we develop a
Dominating Coverage Set extraction algorithm to reduce the continuous solution space to a limited
number.

In summary, the main contributions of this work are summarized as below.

• To the best of our knowledge, this is the first work to study the physical characteristics of
electromagnetic waves that can penetrate obstacles of various materials. We jointly consider
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Table 1. Notations

Symbol Meaning

si Sensor i , or its location
ci Wireless charger i , or its location
oh Obstacle h on the plane
N Number of sensors
M Number of wireless chargers
H Number of obstacles on the plane
Pr (·) Charging power function
U (·) Utility function
D Farthest charging distance of the charger
Pth Threshold for charging utility function

the material, size and location of obstacles, and build a practical charging model to obtain
the energy strength of the areas blocked by obstacles. And then, we aim to select suitable
placement locations for a limited number of chargers based on the proposed charging model
to maximize the overall charging utility.
• We formulate the charging utility maximization problem with obstacles as a WAIT problem,

and prove the NP-hardness of WAIT. To reduce the computational complexity, we discretize
the space to solve the problem of infinite candidate locations on a 2D continuous plane. We
propose the so-called Dominating Coverage Set extraction algorithm to select the candidate
points with the largest number of covers on the plane. Then, we design a greedy algorithm
with an approximation ratio of 1 − 1/e − ε to solve the WAIT problem.
• We conduct extensive simulations and testbed experiments to verify the performance of the

proposed scheme. The experimental results show that our WAIT scheme achieves excellent
charging performance and significantly outperforms comparison algorithms.

The rest of this article is organized as follows. Section 2 introduces preliminaries, including the
simplified charging model, charging utility model and the problem formulation. Section 3 presents
the practical charger placement scheme. Sections 4 and 5 show the results of simulations and field
experiments, respectively. Section 6 discusses related issues. Section 7 reviews the related work
and Section 8 concludes this article.

2 PRELIMINARIES

2.1 Network Model

We suppose that there is a set of omnidirectional wireless rechargeable sensors S = {s1, s2, . . . , sN }
placed on a 2D plane Ω with fixed positions, where N is the number of sensors. We also have M
omnidirectional wireless chargers, denoted asC = {c1, c2, . . . , cM }, which can be placed anywhere
on the 2D plane. If no confusion is caused, then we still use si and c j to represent the location of
rechargeable sensor si and wireless charger c j , respectively.

Meanwhile, there are H static obstacles O={o1,o2, . . . ,oH } with arbitrary shapes and materi-
als distributed on the two-dimensional plane. Here, any sensors and chargers cannot be placed
inside obstacles. We also use oh to denote the location of obstacle oh . To simplify the model, we as-
sume that all obstacles are made of uniform and single material. The material and location of each
obstacle on the plane can be identified beforehand by using localization and sensing techniques
proposed in References [13, 31, 38, 39]. For a quick reference, the major notations are summarized
in Table 1.
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Practical Charger Placement Scheme for Wireless Rechargeable Sensor Networks 11:5

2.2 Simplified Charging Model

To simplify the analysis, we first ignore the influences of obstacles that exist on the plane and
use Friis’s free space equation [26] as the energy transmission model. This model is widely used
in existing studies [7, 9, 10, 19, 30, 42, 45, 50]. In this model, the energy received by a sensor is
determined by the source power of the charger and the distance between the charger and the
sensor. According to the profiling experiments in Reference [17], the correctness and effectiveness
of this model have been proven. Assume that a wireless charger is located at c j and a sensor is
located at si , the power p (si , c j ) received by the sensor can be quantified as

p (si , c j ) =
α

(d (si .c j ) + β )2
· PT , (1)

where α and β are known constants determined by the intrinsic hardware of the device and the
surrounding environment. d (si .c j ) is the Euclidean distance between charger c j and sensor si . PT

is the source power.
Note that the influences of ubiquitous obstacles in the network are not considered in Friis’s space

equation. As shown in Figure 1, obstacles with different materials and sizes have different effects
on the propagation of electromagnetic waves. Obviously, using Equation (1) alone cannot obtain
the energy actually received by the sensors blocked by obstacles. Therefore, how to jointly consider
the influences of the material, size, and location of obstacles on the charging process, and build a
practical charging model with obstacles is a critical issue to achieve efficient charger placement in
real scenario. With this consideration, we will describe the design details of our practical charging
model with obstacles in Section 3.1.

2.3 Charging Utility Model

Because of hardware constraints or practical demand, the power received by rechargeable sensors
usually has an upper bound Pth . Formally, the harvested power by a sensor must not exceed the
threshold Pth regardless of the charging power of chargers. Therefore, we propose the charging

utility model as follows:

Ui (x ) =
⎧⎪⎨⎪⎩

1
Pth
· x , x ≤ Pth ,

1, x > Pth ,
(2)

where Ui (x ) is the charging utility of the sensor si , and x represents the power received by it. In
this model, when the charging power is less than or equal to the preset threshold Pth , the charging
utility is proportional to the power received by the sensor. When the charging power exceeds Pth ,
the charging utility becomes constant.

2.4 Problem Formulation

In this work, we study a fundamental problem of WAIT: how to place a fixed number of omnidi-
rectional wireless chargers on a 2D plane Ω with obstacles, such that the overall charging utility
of all sensors is maximized. The definition of the WAIT problem is given as follows:

Given a limited number of rechargeable sensors with fixed positions distributed on a 2D plane where

obstacles exist, the objective is to find a charging placement scheme that the overall charging utility

of all the sensors is maximized, under the constraint that sensors and chargers must be placed on the

plane Ω and cannot be placed inside the obstaclesO . We define the overall charging utility as the sum

of the charging utilities of all sensors. Formally, we define the WAIT problem as follows:

maximize
N∑

i=1

Ui
��
�

M∑
j=1

P (si , c j )
	

�
, (3)
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subject to
si , c j ∈ Ω,

si , c j � O .
(4)

The following theorem shows the hardness of our WAIT problem.

Theorem 2.1. The WAIT problem is NP-complete.

Proof. We consider a special case of WAIT, named WAIT-S, by removing obstacles. We show
that the decision version of WAIT-S is NP-hard, so is WAIT.

Note that since there are no obstacles on the plane, each charger has a disk-shaped charging
area with a constant radius of D, where D is the farthest charging distance. We assume that the
charging utility of each sensor is 1, as long as it is covered by a charger. Thus, each sensor can be
regarded as a point, and the WAIT-S problem changes to the problem of covering as many points
as possible by M disks with uniform radius D. Thus, we can see that the WAIT-S is exactly the
partial disk covering problem [43]. The theorem thus follows. �

3 PROPOSED SCHEME

In this section, we propose our practical charger placement scheme for the WAIT problem. We
first comprehensively consider the influences of the material, size, and location of the obstacles
on the charging process, and build our practical charging model with obstacles by introducing
shadow fading. We also conduct testbed experiments to verify the correctness of this model. Then,
we approximate the charging power, which is a continuous function of distance, into a piecewise
constant function. By this means, the charging area of each charger is divided into multiple subar-
eas. Next, we develop a Dominating Coverage Set extraction algorithm to reduce the continuous
search space on a 2D plane to a finite number without performance loss. Finally, we reformulate
the WAIT problem as maximizing a monotone submodular optimization problem, and design a
greedy algorithm to address this problem with 1 − 1/e − ε approximation ratio.

3.1 Practical Charging Model with Obstacles

In this subsection, we aim to build a practical charging model with obstacles, so that we can cal-
culate the energy received by the sensors blocked by obstacles. At first, we analyze the influences
of obstacles on the propagation of electromagnetic waves. According to the wireless communica-
tion theory [1], when electromagnetic wave encounters obstacles in the process of propagation,
it will change randomly, resulting in the random change in the received power of the sensor at
a given location. Thus, the material, size, and location of the obstacles will lead to random atten-
uation of electromagnetic waves, only statistical models can be used to characterize this random
attenuation.

Therefore, we introduce shadow fading to characterize the random attenuation of electromag-
netic waves. Shadow fading, also known as slow fading, is a phenomenon in which the received
signal strength decreases due to the shadowing effect caused by obstacles. It will attenuate the
signal power, and even block the signal in severe cases [1]. The log-normal shadowing model has
been confirmed by measured data to accurately model the variation of received power in indoor
and outdoor electromagnetic wave propagation environments [11, 33].

The log-normal shading model takes the ratio of transmitted and received power ψ = Pt/Pr

(Pt and Pr represent transmit power and receive power, respectively) as a lognormally distributed
random variable. Thus, we have the following energy loss expressed as

Ploss = P (ψ ) =
ζ

√
2πσψd B

ψ
exp

⎡⎢⎢⎢⎢⎣
−

(10lдψ − μψd B
)2

2σ 2
ψd B

⎤⎥⎥⎥⎥⎦
, (5)
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where ζ = 10/ln10, μψd B
is the mean of ψdB = 10lдψ in dB, and σψd B

is the standard deviation
ofψdB in dB. A large number of outdoor channel measurements show that the standard deviation
σψd B

ranges from 4 to 13 dB [3, 15]. The mean power μψd B
depends on path loss and obstacles

properties in the area. μψd B
varies with distance. One reason is that the deterministic loss changes

with distance, and the other reason is the increase of charging distance may give a rise to the
number of obstacles, resulting in an increase in the average attenuation.

When shadow fading is dominated by blocking attenuation, the Gaussian model of average
received power can be analyzed with the following fading model. The attenuation of the electro-
magnetic wave traveling through an obstacle of length l can be approximately equal to [1]

Ploss ≈ e−
1
l
·(1−η), (6)

where η is an attenuation coefficient constant independent of obstacle size, and also is unique for
each material [13, 39]. Here, η = 1 means that electromagnetic waves cannot penetrate obstacles.
On the contrary, the smaller the η is, the electromagnetic waves can penetrate obstacle with less
loss.

Note that, the traveling distance of electromagnetic wave in obstacle is related to the relative
position of charger, sensor, and obstacle. If one of them changes, then l it will also vary. To help
understand, we use Figure 2 to further illustrate this situation. It can be seen that an obstacle is
located on the Line-of-Sight (LOS) of sensor s and charger c , which hinders the propagation of
the electromagnetic wave. Although the shape of the obstacle is irregular, we only need to simply
draw a line from the charger to the sensor, the traveling distance l of the wave in the obstacle can
be obtained.

In practical charging scenarios, when there are multiple obstacles between the charger and sen-
sor, the attenuation of the electromagnetic wave is a superposition of the shadow fading effects
caused by the multiple obstacles:

Ploss = e
− 1

l1
·(1−η1 ) × e−

1
l2
·(1−η2 ) × · · · × e−

1
lh
·(1−ηh )

= e
−

H∑
h=1

1
lh
·(1−ηh )

. (7)

To sum up, we combine the Friis’s space equation and the shadow fading model to build our
practical charging model with obstacles:

Pr (si , c j ) =
α · PT

(d (si , c j ) + β )2
· (1 − Ploss ) =

α · PT

(d (si , c j ) + β )2
· (1 − e

−
H∑

h=1

1
lh
·(1−ηh )

). (8)

Thus, we have

Pr (si , c j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ·PT

(d (si .c j )+β )2 , sic j ∩ oh = ∅,

α ·PT

(d (c,s )+β )2 · (1 − e
−

H∑
h=1

1
lh
·(1−ηh )

), sic j ∩ oh � ∅,
(9)

where the condition sic j ∩ oh = ∅ represents the line connecting sensor si and charger c j should
not cross any obstacle, and vice versa.

We assume the power received by one sensor from multiple chargers is additive [6, 8, 17, 41, 48,
49]. That is, given a sensor placement location, the total power P (si ) received by sensor si is

P (si ) =
M∑

j=1

P (si , c j ). (10)

We conduct test-bed experiments to verify the charging model with obstacles. We use an off-the-
shelf TX91501 as a wireless charger and a sensor equipped with P2110 as a wireless rechargeable
sensor, both of them are produced by Powercast [34]. We fix the charger’s position, and vary the
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Fig. 2. Schematic of charging with obstacle.

Fig. 3. Comparison of measured data (black dots) and simulated fitting data (mesh). The black cuboid rep-

resents an obstacle with a thickness of 5 cm. Fitted results are based on α = 8.2, β = 2.8 and ηbr ick = −1.8.

distance between the charger and the sensor from 20 to 100 cm. Note that we place the 5-cm-thick
obstacle 35 cm away from the charger, and measure the energy received by the sensor behind the
obstacle. To evaluate the correctness of our charging model, we also use Equation (9) to fit the
experimental data. As shown in Figure 3, the fitting results illustrate that our practical charging
model is suitable for real charging scenarios with obstacles.

Next, we use bricks and paper as obstacles, and verify the correctness of our charging model by
setting the value of thicknesses to 10 cm and 15 cm, respectively. As shown in Figure 4, the charger
and the sensor are placed on both sides of the obstacle. We also fix the position of the charger, and
record the received energy by changing the distances between the sensor and the charger from 50
to 100 cm. From Figure 5, we can see that the measured data fit well with the simulation results,
which further demonstrates the correctness of our proposed charging model with obstacles.

3.2 Charging Power Approximation and Area Discretization

After the positions and the materials of obstacles are obtained by using localization and sensing

technology [13, 31, 38, 39], the power attenuation coefficient 1−e−
∑H

h=1
1
lh
·(1−ηh )

caused by obstacles
in Equation (8) can be regarded as a constant. Let μ denote the product of the power attenuation
coefficient and the source power, the energy Pr (d ) received by the sensor from the charger with
distance d can be calculated as follows:

Pr (d ) =
μ · α

(d + β )2
. (11)

Note that, μ = 1 means that there do not exist obstacles between the charger and the sensor.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 11. Publication date: October 2023.
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Fig. 4. Testbed experiments to explore the relationship between material, thickness of obstacles, and energy

strength.

Fig. 5. A testbed experiment to measure the change of energy strength from 50 to 100 cm in charging distance

when obstacles of different materials (i.e., paper and brick) and thicknesses (i.e., 10 cm and 15 cm) are placed

between the sensor and the charger. We set α = 8.2, β = 2.8, ηbr ick = −1.8, ηpaper = −6.7. The dots in the

figure represent the measured data.

Since the charging power is nonlinear with the distance, we introduce a piecewise constant

function to approximate the charging power Pr (d ) to P̃r (d ). The definition of P̃r (d ) is given as
follows:

P̃r (d ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pr (l (1)), d = l (0),

Pr (l (k )), l (k − 1) < d ≤ l (k ) (k = 1, 2, . . . ,K ),

0, d > l (K ),

(12)

where l (0) = 0, l (K ) = D. Moreover, K refers to the total number of constant segments of the
piecewise function. Obviously, K is a key parameter that controls the approximation error. With a
smaller K , lower computational complexity will be introduced, but the approximation error tends
to be larger, and vice versa.

We have the following theorem to ensure that the approximation error is less than ε . Note that
ε is a predetermined error threshold.

Theorem 3.1. We set l (0), l (K ) = D, and l (k ) = β ((1 + ε )
k
2 − 1), (k = 1, 2, . . . ,K − 1). Then, we

get K = 	 ln (Pr (0)/Pr (D ))
ln (1+ε ) 
 = 2	

ln (1+D
β

)

ln (1+ε ) 
, the approximation error is subject to

1 ≤ Pr (d )

P̃r (d )
≤ 1 + ε, (d ≤ D). (13)

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 11. Publication date: October 2023.
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Fig. 6. Power approximation.

For ease of understanding, we use Figure 6 as an example to illustrate this charging power ap-
proximation. In Figure 6, K is set to 4, and the blue curve is the energy actually received by the
sensor from the charger, and the red segments are the approximate energy after power discretiza-
tion using Equation (12).

Due to geometric symmetry, the placeable area for the charger to transfer energy to sensor si can
also be discretized into K concentric rings centered at si . When the charger is located at different
locations within a certain ring, the energy received by the sensor covered by the charger can be
approximately regarded as equal. Note that, because of the influences of obstacles, the shapes of
concentric rings of each sensor may be irregular. Figure 7 shows an example for which we draw
three concentric rings for three sensors with radius l (1), l (2), l (3), and obtain 22 subareas. We
can see that the shapes of the three concentric rings of sensor s1 become irregular because of the
obstacle. In addition, the charger placement areas for s1, s2, and s3 have an overlapping region,
which is divided into several subareas (i.e., a9 and a10) by concentric rings. It is worth noting that
s1, s2, and s3 can receive energy from the charger simultaneously when the charger is placed in
these overlapping areas.

Next, We have the following theorems for area discretization:

Theorem 3.2. Let P̃r (si ) be the approximated charging power received by sensor si in each subarea,

if P (si ) = 0, then P̃ (si ) = 0; otherwise, the approximate error is

1 ≤ Pr (si )

P̃r (si )
≤ 1 + ε . (14)

Proof. We omit the proof due to space limitation. �

Theorem 3.3. The number of subareas after area discretization is O (N 2ε−2H 2).

Proof. According to Theorem 3.1, each sensor has a placeable area that is divided into K =
O (ε−1) concentric rings. Moreover, there are N sensors on the plane, which generates O (Nε−1)
subareas in total. Further, consider that there are H obstacles, the total number of overlapping
areas due to the obstacles is O (Nε−1 + H ). Therefore, the number of divided subareas is squared,
i.e., O ((Nε−1 + H )2), which can be simplified to O (N 2ε−2H 2). �

3.3 Dominating Coverage Set Extraction

After area discretization, the whole 2D plane is divided into multiple subareas. Then, in this sub-
section, we develop a Dominating Coverage Set (DCS) extraction algorithm to extract candidate
placement subareas for chargers from those divided subareas.

Then, we give the following definitions.
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Fig. 7. Illustration of area discretization.

Definition 3.4 (Dominance). Given the placement locations of two chargers c1, c2, and their cor-
responding sensor coverage sets S1 and S2. If S1 = S2, then we say c1 is equivalent to c2; if S2 ⊂ S1,
then we define c1 dominates c2.

Definition 3.5 (Dominating Coverage Set). Given a set of sensors Si covered by a charger ci , if
there does not exist a sensor coverage set S j with charger’s placement location c j such that Si ⊂ S j ,
then we say Si is a DCS.

Definition 3.6 (Candidate Covered Set of Sensors). The sensors in the Candidate Covered Set of

Sensors Ŝ of subarea ai are those sensors that can be charged by chargers located in ai with non-
zero power.

Since it is always better to choose DCSs than a subset of them, we focused on finding all possible
DCSs and their corresponding placement locations.

For better comprehension, we use Figure 7 to illustrate the process of extracting DCSs. As shown
in Figure 7, the charger placeable areas of s1, s2, and s3 are discretized into multiple subareas. In
Figure 7, the Dominating Coverage Sets are a9 and a10, since when a charger is placed in these sub-
areas, their candidate covered set of sensors are all {s1, s2, s3}. The detailed process of Dominating
Coverage Set extraction algorithm is given in Algorithm 1.

After getting all the DCSs and corresponding subareas, we need to choose M DCSs to place
the all chargers to maximize the overall charging utility. The specific method will be described in
detail in the next subsection.

3.4 Problem Reformulation and Solution

In this subsection, we detail how to select a given number of locations to place chargers to max-
imize the overall charging utility. Particularly, we first reformulate the WAIT problem and prove
that it is a submodular function. Consequently, we propose a greedy algorithm to solve the prob-
lem.

We use Π to denote the set of all DCS solutions obtained after executing Algorithm 1. For each
DCS in Π, we can calculate the charging power and charging utility received by each sensor when
the charger is located at the corresponding placement location. Then, we rewrite the WAIT prob-
lem as follows:
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ALGORITHM 1: Dominating Coverage Set Extraction Algorithm

Input: The set of sensors S , the farthest charging distance D, the approximation error threshold
ε , the constant β , the obstacles on the plane.

Output: All DCSs and their corresponding subareas.

1: Calculate the number of segments K for the piecewise constant function: K = 2	
ln (1+D

β
)

ln (1+ε ) 
;
2: A← ∅;
3: for each sensor si ∈ S do

4: Draw the K discretized charger placeable area of si using Equation (12).
5: end for

6: Add all discretized subareas to A;
7: for each subarea ai ∈ A do

8: Calculate the corresponding candidate covered set of sensors for each subarea ai ;
9: Add the candidate covered set of sensors and subarea ai into the candidate DCSs;

10: end for

11: Identify and remove all the DCSs that are subsets of other DCSs in candidate DCSs;
12: Return DCSs and their corresponding subareas;

Let bj denote a binary variable, which can be used to indicate whether the jth placement location

in Π is selected or not. Therefore, the Problem 1 in Section 2.4 can be reformulated as

maximize
N∑

i=1

Ui
��
�

∑
ĉ j ∈Π

bj P̃ (si , c j )
	

�
, (15)

subject to
|Π |∑
j=1

bj = M bj ∈ {0, 1} . (16)

In the following, we prove that the objective functionU (x ) has three properties: nonnegativity,
monotonicity and submodularity. Therefore, we propose a (1− 1

e
− ε ) approximation algorithm to

solve Problem 2 as shown in Algorithm 2. We first give the following definition.

Definition 3.7 (Nonnegativity, Monotonicity, and Submodularity). Given a non-empty finite set
S , and a function f defined on the power set 2S of S with real values. f is called nonnegative,
monotone, and submodular if and only if it satisfies the following conditions, respectively:

1. f (∅) = 0 and f (X ) ≥ 0 for any X ⊆ S (nonnegative);
2. f (X ) ≤ f (Y ) for all X ⊆ Y ⊆ S or equivalently: f (X ∪ {e}) − f (X ) ≥ 0 for any X ⊆ S and

e ∈ S\X (monotone);
3. f (X ∪ {e}) − f (X ) ≥ f (Y ∪ {e}) − f (Y ) for any X ⊆ Y ⊆ S and e ∈ S\Y (submodular).

Then, we have the following theorem.

Theorem 3.8. The objective function U (x ) is nonnegative, monotone, and submodular.

Proof. To check whether theU (X ) in Equation (15) is a submodular function, we need to verify
whether U (X ) satisfies the three conditions in Definition 4. Then, we prove that U (X ) satisfies
nonnegative, monotone, and submodularity properties, respectively.

1. Obviously, the charging utility function U (X ) = 0 when X = ∅, since there is no charger
on the plane to provide charging service for sensors. And we can know that U (X ) is a
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ALGORITHM 2: Greedy Algorithm for Placing Chargers

Input: The number of chargers M , all candidate DCSs Π and their corresponding locations, charg-
ing utility function U (X ).

Output: The final placement location set for chargers C and overall charging utility U (C ).
1: C ← ∅;
2: while C ← ∅ do

3: c∗ ← arд maxc ∈Π\C (U (C ∪ {c}) −U (C ));
4: C ← C ∪ {c∗};
5: end while

6: Randomly select a point as a placement location for charger in each subarea;
7: Return C,U (C );

nonnegative function from Equation (2), that is, any charger can provide nonnegative charg-
ing power to the sensor. Therefore, the U (X ) function satisfies nonnegativity.

2. It is also clear that when a new candidate placement location is selected, the charging utility
will increase, because U (X ) defined in Equation (2) is non-decreasing. Formally, for all X ⊆
Y ⊆ S , we have

U (X ) =
N∑

i=1

UX (si ) ≤
N∑

i=1

UY (si ) = U (Y ). (17)

Therefore, the U (X ) function satisfies monotonicity.
3. For all X ⊆ Y ⊆ S , we need to prove that f (X ∪ {e}) − f (X ) ≥ f (Y ∪ {e}) − f (Y ). First,

we define a function h(A, i ) =
∑

c j ∈A P̃r (si , c j ). The observation is that h(·, i ) is an increasing
function, since more chargers provide more charging power. Then, for the candidate place-
ment locations sets X ⊆ Y ⊆ Π and a candidate placement location e ∈ Π\Y , we can obtain
that h(X , i ) ≤ {h(X ∪ {e} , i ),h(Y , i )} ≤ h(Y ∪ {e} , i ). Therefore, we have

[Ui (h(X ∪ {e} , i ) −Ui (h(X , i ))] − [Ui (h(Y ∪ {e} , i ) −Ui (h(Y , i ))] ≥ 0, (18)

because for any 0 ≤ y1 ≤ y2 and Δy ≥ 0,

[Ui (y1 + Δy) −Ui (y1)] − [Ui (y2 + Δy) −Ui (y2)] ≥ 0 (19)

and

h(X ∪ {e} , i ) − h(X , i ) = h(Y ∪ {e} , i ) − h(Y , i ) = h({e} , i ). (20)

Thus, we have

[f (X ∪ {e}) − f (X )] − [f (Y ∪ {e}) − f (Y )]

= {[Ui (h(X ∪ {e} , i ) −Ui (h(X , i ))]− [Ui (h(Y ∪ {e} , i ) −Ui (h(Y , i ))]} ≥ 0.
(21)

Finally, we obtain f (X ∪ {e}) − f (X ) ≥ f (Y ∪ {e}) − f (Y ) and prove that theU (X ) function
satisfies submodularity. �

Next, we design a greedy algorithm to select the placement locations for chargers. Algorithm 2
is essentially a greedy algorithm, in each iteration, we add the location that maximizes the mar-
ginal utility of the objective function into C , i.e., c∗ ← arд maxc ∈Π\C (U (C ∪ {c}) − U (C )). Then,
we randomly choose a placement location for the charger in each subarea, since when a charger
is placed at any point in the subarea, the power it transmits to the surrounding sensors is approxi-
mately constant. The detailed process of Greedy-based Placement Algorithm for Chargers is given
in Algorithm2.

Theorem 3.9. Our algorithm achieves an approximate ratio of 1 − 1
e
− ε .
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Fig. 8. Relations between algorithms.

Proof. According to the results in Reference [14], a greedy algorithm is used to maximize a
submodular function and achieves 1 − 1

e
approximation ratio. Therefore, the approximate ratio of

our Algorithm2 is also 1 − 1
e

. Let Π∗ denote the optimal solution to the problem P2, then we have

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π

bj P̃ (si , c j )
	

�
≥
(
1 − 1

e

) N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

bj P̃ (si , c j )
	

�
. (22)

By Theorem 3.1, we can obtain P̃r (si , c j ) ≥ 1
1+ε

Pr (si , c j ). Then, by the property of the charging
utility function, we have

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

bj P̃ (si , c j )
	

�
≥

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

1

1 + ε
bjP (si , c j )

	

�
≥ 1

1 + ε
·

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

bjP (si , c j )
	

�
. (23)

Combining inequality Equations (22) and (23), we have

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π

bj P̃ (si , c j )
	

�
≥
(
1 − 1

e

)
· 1

1 + ε
·

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

bjP (si , c j )
	

�

≥
(
1 − 1

e
− ε
)
·

N∑
i=1

Ui
��
�

∑
ĉ j ∈Π∗

bjP (si , c j )
	

�
.

(24)

Hence, the approximate ratio of the WAIT algorithm is 1 − 1
e
− ε . �

Theorem 3.10. The time complexity of the WAIT algorithm is O (MN 4ε−4H 4).

Proof. First, the algorithm needs to discretize the charger placement area of all sensors ac-
cording to obstacles on the plane and error threshold ε . The time complexity of this step is thus
O (N 2ε−2H 2) according to Theorem 3.3. Then, we need to enumerate each subarea to select the
Dominating Coverage Sets, which time complexity isO (N 4ε−4H 4). Finally, in the greedy algorithm,
the loop will be done M times, so the final result of time complexity is O (MN 4ε−4H 4). �

3.5 Relations of Algorithms

We draw a paradigm (see Figure 8) to illustrate the relationships between our proposed algorithms
for making our solution more clear.

First, Algorithm 1 is called with the set of sensors S and the set of obstacles O as parameters.
Then, Algorithm 1 is applied to generate all Dominating Coverage Sets and their corresponding
subareas. Finally, Algorithm 2 is executed to obtain the final placement location set for chargersC
and overall charging utility U (C ).

4 SIMULATIONS

In this section, to demonstrate our scheme is suitable for practical scenario with obstacles, sim-
ulations are conducted by comparing it with three other algorithms in terms of the number of
chargers M , number of sensors N , error threshold ε , and power threshold Pth .
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Table 2. Simulation Parameters

Parameters Values

Network area 20 m × 20 m
Number of sensors 18
Number of chargers 12
Source power PT (W ) 3
Farthest charging distance for chargers (m) 3
Threshold for charging utility function (mW ) 1
Approximation error ε 0.2
Attenuation coefficient of wood ηwood −38.1
Attenuation coefficient of brick ηbr ick −1.8
Attenuation coefficient of metal ηmetal 1

4.1 Simulation Setup

We consider a WRSN consisting of 18 sensors equipped with an omnidirectional antenna, which
are placed within a 20 m × 20 m square area. We also have 12 omnidirectional chargers with work-
ing power of 3 W [35, 40, 42]. There are five obstacles in the square, and their materials are metal,
wood, and brick, respectively. Among these materials, metal can completely block the transmitting
power, the brick will bring serious electromagnetic wave attenuation, while the impact of wood is
significantly weaker. The parameters of the practical charging model with obstacles in Equation (9)
are set as α = 8.2, β = 2.8, ηwood = −38.1, ηbr ick = −1.8, ηmetal = 1. All these parameters are
verified by filed experiments (see Figures 1, 3, and 5). The default simulation parameters are shown
in Table 2. Moreover, all sensors and chargers cannot be placed inside obstacles.

To evaluate the performance of the proposed WAIT scheme, we compare it with the following
three charging placement algorithms.

Heterogeneous wIreless charger Placement with Obstacles (HIPO) algorithm [42] is an
algorithm for placing directional chargers on a 2D plane where obstacles exist. HIPO assumes that
all obstacles would completely block the propagation of the electromagnetic waves, resulting in
multiple “holes” where the sensors cannot receive any energy from the charger. After building
a charging model with obstacles, HIPO maximizes the overall charging utility through a greedy-
based charger placing method. For fair comparisons, in our simulations, the chargers placed by
HIPO are omnidirectional.

Wireless Charger Placement (WCP) algorithm is an algorithm for placing omnidirectional
chargers ignoring the influences of obstacles on the charging process. Similar to our WAIT scheme,
after extracting the Dominating Coverage Sets and their corresponding subareas, WCP uses a
greedy-based approach to select the M locations that maximizes charging utility from the candi-
date locations to place the chargers.

RANdom charger placement (RAN) algorithm is an algorithm for randomly placing omnidi-
rectional chargers in the network.

4.2 Performance Comparison

4.2.1 Instance Illustration. Figure 9 shows the solutions for all algorithms for an instance with
18 sensors located in the 20 m× 20 m square. We can see that the WAIT scheme tends to place one
charger (e.g., c1, c2) around obstacles with low attenuation coefficient to charge multiple sensors
on both sides of obstacles. In contrast, around metal obstacles, WAIT tends to place charger to
charge each sensor within its proximity (e.g., c3, c4, c5). The rationale behind this is that WAIT
fully considers the different blocking impacts of the obstacles’ materials and thickness, then
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Fig. 9. Instances.

Table 3. Running Results of Different Algorithms

WAIT HIPO WCP RAN

Charging Utility 17.017 14.413 12.627 5.045

reasonably chooses the placement locations for chargers according to the location relationship
between obstacles and sensors. The charging utility achieved by four algorithms in the default
network environment are shown in Table 3.

It can be seen that the charging utility achieved by WAIT is much larger than HIPO, WCP, and
RAN do. This means that our WAIT is suitable for practical charging scenario where multiple
obstacles with different materials, shapes and sizes are distributed. The charging utility achieved
by HIPO is 14.413, less than that achieved by WAIT. This indicates that the assumption that all ob-
stacles can completely block electromagnetic waves does not hold in real applications. Moreover,
since the WCP algorithm ignores the influences of obstacles on the propagation of electromagnetic
waves, its charging utility is lower than that of WAIT and HIPO. The charging utility achieved
by RAN is the smallest. The reason is that the placement locations for chargers are randomly
selected.

4.2.2 Impact of Number of Chargers M . Our simulation results show that on average, WAIT
outperforms HIPO, WCP, and RAN by 20.6%, 41.08%, and 248%, respectively, in terms of M .
Figure 10(a) shows that the overall charging utility in creases monotonically with M . Moreover,
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Fig. 10. Simulations.

the charging utility of our WAIT first increases at a high rate and then keeps relatively stable at 17
when M reaches 14. The essential reason for this trend is that our WAIT problem is submodular,
which has been proved in Section 3.4. In contrast, although comparison algorithms have the same
trend, the maximum charging utility achieved by these three algorithms are only 14.9, 13.14, and
6.8, respectively.

4.2.3 Impact of Number of Sensors N . Our simulation results show that on average, WAIT out-
performs HIPO, WCP, and RAN by 26.3%, 53.8%, and 161.9%, respectively, in terms of N . From
Figure 10(b), we can see that the charging utility of all algorithms increases monotonically with N .
Note that, the performance of our WAIT scheme grows almost linearly with N . This indicates that
WAIT can obtain stable charging utility from each sensor under different sensor densities. Fur-
thermore, with the increase of N , the advantage of WAIT becomes more obvious, which further
indicates that WAIT is more effective than the other three algorithms.

4.2.4 Impact of Error Threshold ε . Our simulation results show that on average, WAIT outper-
forms HIPO, WCP, and RAN by 20.6%, 40.1%, and 232.6%, respectively, in terms of ε . It can be seen
from Figure 10(c), with the increase of ε , the charging utility of all algorithms is all stable, and that
of our WAIT scheme is always greater than 17. This suggests that we can reduce the running time
of the WAIT algorithm without significant performance loss by setting a larger ε .

4.2.5 Impact of Power Threshold Pth . Our simulation results show that on average, WAIT out-
performs HIPO, WCP, and RAN by 21.8%, 50.5%, and 354.9%, respectively, in terms of Pth . As shown
in Figure 10(d), the charging utility of all algorithms decreases slightly as Pth increases. This is be-
cause with the increase of Pth , the energy received by the sensor will gradually be less than Pth ,
which makes its charging utility smaller, resulting in the decline of the overall charging utility.
Even so, our WAIT algorithm still outperforms other comparison algorithms.
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Fig. 11. Testbed.

5 FIELD EXPERIMENTS

In this section, we conduct field experiments to verify the performance of the proposed WAIT
scheme.

5.1 Experimental Setup

As shown in Figure 11, our testbed consists of eight sensors and three TX91501 wireless chargers
(both of them are produced by Powercast [34]), which are placed on a 4 m × 3 m 2D plane.
Moreover, there are three obstacles of different shapes distributed on the plane, which are made of
wood, bricks, and metal, respectively. The coordinates of eight sensors are (0.94, 1.28), (0.48, 0.52),
(0.64, 2.22), (1.84, 0.82), (2.78, 1.64), (3.1, 2.2), (3.4, 1.54), and (1.3, 1.96), respectively. In addition,
we set D = 1m, Pth = 10 mW, and use Equation (2) to calculate the charging utility of each sensor.
Since TX91501 is a directional charger, to migrate impacts given by orientation angles, we rotate
it when necessary to mimic omnidirectional charger [7, 23, 27, 45]. Considering the randomness
and uncertainty of the RAN algorithm, we use Uniform Deployment Algorithm (UDA) here
to evenly distribute the three chargers in the network area. Note that, since a wireless charger will
be deployed inside the obstacle when using the horizontal UDA algorithm, we apply the vertical
UDA algorithm to deploy the wireless chargers and their coordinates are (2, 2.25), (2, 1.5), and
(2, 0.75), respectively.

5.2 Experiments Results

In Figure 12, the placement schemes for WAIT, HIPO, WCP, and UDA are depicted in red, black,
purple, and green, respectively. Table 4 gives the detailed placement coordinates of each charger
generated by the four schemes. Figure 13 shows the charging utility obtained by each sensor. We
can see that only our WAIT can achieve charging utility from all sensors. This means that all
sensors can be covered by the chargers deployed by WAIT. Moreover, there are seven sensors that
obtain the highest charging utility, which further verifies the effectiveness of our WAIT scheme
significantly. The overall charging utility achieved by all algorithms is shown in Table 5. It can
be seen that our WAIT scheme outperforms HIPO, WCP, and UDA by 23%, 43.4%, and 240.9%,
respectively.
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Fig. 12. Positions of chargers and sensors.

Table 4. Charger Placement Scheme for Four

Algorithms in Field Experiment

chargerID WAIT HIPO WCP UDA

1 (3.1, 1.9) (2.7, 1) (0.68, 1.38) (2, 2.25)
2 (1.13, 0.82) (0.78, 0.95) (2.64, 1.15) (2, 1.5)
3 (0.98, 2.12) (1.05, 2.1) (3.12, 1.8) (2, 0.75)

Fig. 13. Charging utility of each sensor.

Table 5. Overall Charging Utility for Four Algorithms in

Field Experiment

WAIT HIPO WCP UDA

Charging Utility 7.84 6.373 5.469 2.3

6 DISCUSSION

How to achieve a required charging utility by deploying the minimum number of charg-

ers?

Using the minimum number of chargers to obtain the required charging utility from all sensors
is an NP hard problem, which can be proved by a reduction from the set cover problem [9]. It
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is worth pointing out that different from the traditional set cover problem in wireless charging
field, the coverage range of each charger may no longer be a standard circle due to obstacles.
Nevertheless, we can still use the practical charging model with obstacles proposed in this article
to get different sensors covered by different chargers. And then, all Dominating Coverage Sets
and corresponding candidate subareas can be extracted by employing the proposed Dominating
Coverage Sets extraction algorithm. Finally, we can revise our greedy algorithm to select candidate
placement locations one by one, until the required charging utility is achieved. According to the
analysis results in Reference [5], the greedy algorithm can achieve 1

ln m
approximate ratio, where

m is the number of candidate placement locations.
How to design an on-demand charging scheme to charge sensors in practical charging

scenarios with obstacles wirelessly?

The Mobile Charger (MC) scheduling is an important problem in wireless charging field. In the
real scenario with obstacles, there are two critical problems when we design an effective charging
scheduling scheme: (i) how to obtain sojourn areas for MC to cover sensors with charging demands
by considering the influences of obstacles on electromagnetic waves; (ii) how to plan the charging
order for the MC to visit these sojourn areas and generate the shortest charging path that can
avoid obstacles.

For the first problem, similar to our WAIT scheme, the MC’s placeable area of each sensor with
charging demand can be easily obtained by using our practical charging model with obstacles.
Then, we can design an approximation algorithm to find the minimum number of overlapping
areas that can cover all sensors from all overlapping areas formed by these placeable areas. For
the second problem, a feasible method is to determine the charging order for the MC to visit
these sojourn areas according to the residual lifetimes of sensors. Then, we can design a charging
location selection algorithm for MC to select a charging location from each sojourn area to
generate the shortest charging path. Furthermore, if there are obstacles on the charging path, the
Obstacle Avoidance (OA) algorithm proposed in Reference [2] can be used to adjust the charging
path.

7 RELATED WORK

In recent years, much effort has been devoted to constructing WRSNs. Generally, previous studies
can be classified into two categories based on the different functionalities of wireless chargers:
wireless charger placement [9, 10, 32, 42, 47, 50] and mobile charger scheduling [19, 23–25, 30, 35,
37, 45].

7.1 Wireless charger placement

For the wireless charger placement issue, the stationary chargers transmit energy to surrounding
sensors within the charging range. Zhang et al. [50] studied the joint optimization problem of
charger placement and power allocation to maximize the charging quality, subject to a power
budget. Dai et al. [9] focused on how to optimize the charging utility by using directional
wireless chargers. The authors developed an approximation algorithm to obtain the placement
locations and the orientations for chargers. In Reference [10], Dai et al. also proposed a wireless
charger placement scheme with limited mobility and further designed an approximate algorithm
to maximize the overall charging utility. Yu et al. [47] first considered the wireless charger
placement problem under connectivity constraint for wireless chargers, and then they proposed
a constant approximation algorithm to determine the placement position and orientation angle
for each charger. Note that the above traditional studies all ignored the impacts of obstacles,
making these schemes unsuitable for practical charging scenarios. Ma et al. [32] considered the
wave interference in the concurrent charging scenario and they proposed a concurrent charging
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scheme to take full advantage of the high power caused by constructive interference to enhance
the charging efficiency. Recently, Wang et al. [42] considered the wireless charger placement
with obstacles for the first time. However, they assumed that the electromagnetic waves cannot
penetrate any obstacles, which conflicts with the real environment.

7.2 Mobile Charger Scheduling

For the mobile charger scheduling issue, mobile chargers are introduced to visit energy-critical
sensors in some order to replenish energy to them. Liu et al. [30] proposed a partial charging
scheme to jointly optimize the number of dead sensors and the energy usage effectiveness.
Different from the traditional 2D scheduling, Lin et al. [25] employed drone as the mobile charger
to replenish energy to sensors in 3D scenarios. They developed a cost-efficient algorithm to
maximize the energy received by all sensors, which is subject to the energy budget of the drone.
In Reference [19], Jia et al. designed a computational geometry-based algorithm to select multiple
charging positions where the mobile charger stays to charge nearby sensors. Yang et al. [45] stud-
ied the mobile charger scheduling problem for multi-sensor recharging with deadline constraints
to maximize the overall effective charging utility and minimize the travelling time for moving
as well. Tomar et al. [37] proposed a novel scheduling scheme for on-demand charging scenario.
They have adopted the Mamdani Fuzzy Inference System to determine the charging order for the
sensors. Ren et al. [35] exploited the neglected back lobe for mobile charging to jointly minimize
the number of dead sensors and maximize energy usage efficiency. Different from the above re-
searches, which neglected the existence of obstacles, Lin et al. [23, 24] concentrated on maximizing
charging utility in a practical WRSNs with obstacles. They first proposed a charging model based
on the Fresnel diffraction model by transforming obstacles into equivalent screens. Afterwards,
they designed a scheduling algorithm to generate a charging path for MC. However, this charging
model is only applicable to metal obstacles with appropriate size (that is, the size of the obstacles
is not greater than the wavelength), so the applicability of this model in practical scenarios is quite
limited.

8 CONCLUSION

In this work, we focus on how to design a practical charger placement scheme for WRSNs with
obstacles. To obtain the energy strength of the areas blocked by obstacles, we first jointly consider
the influences of the material, size, and position of obstacles on electromagnetic wave propaga-
tion to build a practical charging model with obstacles based on shadow fading. We also conduct
testbed experiments to verify the correctness of this model. Further, we design a piecewise con-
stant function to approximate nonlinear charging power and propose a Dominating Coverage Set
extraction algorithm to reduce the continuous solution space to a limited number. Then, we de-
velop a greedy algorithm to select the appropriate placement location for each charger. Finally,
we carry out extensive simulations and testbed experiments to show that our proposed scheme
outperforms the state-of-the-art work.

In this article, our primary goal is to investigate the impact of obstacles on the propagation
of charging signals in practical charging scenarios. Thus, to simplify the charging model with
obstacles, we adopt the settings proposed in References [6, 8, 17, 41, 48, 49]. These settings assume
the energy received by a sensor from multiple chargers is additive. Although the effectiveness of
this assumption has been proven in low-density WRSNs, it is important to consider the influence
of wave interference in high-density networks, which can result in complex energy distribution
[16, 32]. Thus, in future, we will focus on how to design a more efficient and practical charger
placement scheme for high-density WRSNs with obstacles.
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