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Abstract—To improve the charging performance, employing
multiple wireless chargers to charge sensors concurrently is
an effective way. In such charging scenarios, the radio waves
radiated from multiple chargers will interfere with each other.
Though a few work have realized the wave interference, they
do not fully utilize the high power caused by constructive
interference while avoiding the negative impacts brought by the
destructive interference. In this paper, we aim to investigate
the power distribution regularity of concurrent charging and
take full advantage of the high power to enhance the charging
efficiency. Specifically, we formulate a concurrent charGing utility
mAxImizatioN (GAIN) problem and build a practical charging
model with wave interference. Further, we propose a concurrent
charging scheme, which not only can improve the power of
interference enhanced regions by deploying chargers, but also
find a set of points with the highest power to locate sensors.
Finally, we conduct both simulations and field experiments to
evaluate the proposed scheme. The results demonstrate that our
scheme outperforms the comparison algorithms by 40.48% on
average.

Index Terms—wave interference, concurrent charging, charger
placement, sensor deployment, wireless power transfer.

I. INTRODUCTION

BENEFITING from the breakthrough of Wireless Power
Transfer (WPT) technology [1], the Wireless Recharge-

able Sensor Network [2]–[7] has become a promising platform
for wide applications, including precision agriculture, ecolog-
ical environment monitoring, military fields, etc [8]–[13]. In
such large-scale scenarios, deploying a large number of charg-
ers to enable sensors to harvest energy from multiple sources
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Fig. 1: A simulation of how power is distributed between two chargers
with frequency of 915MHz.

is an effective way to improve charging efficiency [14]–
[24]. Apparently, this charging paradigm means a significant
increase in charger density, introducing numerous overlaps of
charger coverage.

Sensors located within such overlaps will be charged by
multiple chargers concurrently (called as concurrent charging
in this paper). According to the wave interference and power-
amplitude relationship [25], the combined power at any point
in overlaps depends on the amplitude and phase of the arriving
waves. The phase difference among the waves is determined
by the distance difference, and the combined amplitude of
multiple waves equals the vector sum of the amplitudes of
individual waves. Specifically, when the waves are in phase
(i.e., the crests of waves encounter), constructive interference
occurs. At this time, the combined power is more significant
than the sum of all waves’ power. On the contrary, when
the waves are in anti-phase (i.e., a crest meets a trough),
destructive interference occurs. Then they cancel and the
combined power may be less than any of the waves’ power or
even close to zero.

Fig. 1 shows the power distribution between two chargers at
a distance of 100cm. We can see the distribution of combined
power (i.e., the orange line) shows fluctuation, meanwhile the
adjacent crest and trough present a significant difference in
power. This indicates that the wave interference has a notable
impact on the energy eventually received by sensors.

Although much effort has been devoted to constructing
WRSN with multiple chargers, most of them ignore the
wave interference and instead assume the charging power
is additive from different chargers [14]–[21], [26]–[28]. By
plotting the additive power of the two waves (i.e. the blue
line) in Fig. 1, we can see that there is a great difference
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Fig. 2: A simulation of how power is distributed when 5 chargers
with frequency of 915MHz are placed on a 10m× 10m 2D plane.

between additive power and combined power, especially at
the crests and troughs. On the other hand, a few researchers
have realized the interference effect, but they just achieved
to avoid the negative influences of destructive interference by
scheduling (i.e., turn on/off) the chargers [23], [24]. A recent
study [29] focused on addressing the dynamic demands of
the network by adjusting the angles of directional chargers.
However, the authors did not consider how to place the
chargers, making it challenging to ensure that each sensor
receives sufficiently strong waves for constructive interference.
Thus we can conclude that if we simply combine existing
arts, it is impossible to significantly improve the charging
performance by using constructive interference and avoiding
destructive interference simultaneously.

In this paper, we consider a practical concurrent charging
scenario, in which each sensor has a specific deployable range
around each Point of Interest (PoI). We aim to take full
advantage of the nonlinear effect of the wave interference, to
enable sensors to harvest considerable combined power from
multiple chargers. Thus, we state our concurrent charGing
utility mAxImizatioN (GAIN) problem as follows. Given a
fixed number of chargers, a set of PoIs and sensors, how to
design a concurrent charging scheme to maximize the overall
charging utility for all sensors. In particular, our objective can
be divided into two folds: (i) how to deploy the chargers so that
within the deployable ranges of the sensors, the constructive
interference can provide as high as possible power for sensors.
(ii) how to find the highest-power point for each sensor in
limited deployable ranges.

Generally, there are two main challenges in our problem.
The first challenge is selecting placement positions for a

limited number of chargers, which is exactly the traditional
NP-hard partial disk coverage problem [30]. Besides, we
also need to promote the combined power within the sensor
deployable ranges, which further increases the difficulty of
charger placement.

The second challenge is that finding the highest-power point
in each sensor deployable range is difficult under complicated
energy distribution. The complexity results from (i) the charg-
ing power is nonlinear with distance; (ii) the interference effect
from multiple waves is nonlinear too. Moreover, though the
sensor deployable range is limited, the available locations are

still continuous values leading to infinite candidate options,
further raising computational complexity.

Fig. 2 shows the complicated energy distribution in real
charging scenarios. We can see that the whole network appears
to be alternating bright (i.e., interference enhanced) and dark
(i.e., interference weakened) regions with different shapes and
sizes, even around chargers. Moreover, there is a great power
difference between different positions in the network. For
example, for two adjacent points a and b, their power is
0.56mW and 19.73mW, respectively, the difference between
them reaches 35.23 times. And for the points c and d, their
power difference is also 1.92 times, even though they are both
located in the enhanced regions.

To address the GAIN problem, for the first challenge, we
develop a charger placement algorithm to maximize the overall
additive power of the waves arriving at the centers of all sensor
deployable ranges. The rationale behind is that only when the
power of the waves involved in interference is high, the power
of the interference enhanced regions can be high enough.
For the second one, we investigate this complicated power
distribution by proposing a practical charging model with
wave interference. Through this model, we explore the power
distribution regularity caused by the nonlinear interference of
multiple chargers. Then, to tackle the problem of continuous
search space, we divide each sensor deployable range into
several subareas by the number of interference enhanced
regions, reducing the number of candidate sensor locations
from infinite to finite. Based on this, we develop a sensor
deployment algorithm to find the optimal deployment location
of each sensor in this limited number of options.

The main contributions of this work are summarized below.
• To the best of our knowledge, we are the first to fully

utilize the high power caused by the wave interference
to promote charging efficiency. We build a practical
charging model with the wave interference to investigate
how nonlinear interference impacts the energy distri-
bution. Further, we explore the distribution regularity
of interference enhanced regions. The evaluation results
show that our charging model is accurate, andhence it
can be applied into other charging scenarios.

• To maximize the overall charging utility of all sensors,
we develop a concurrent charging scheme. Specifically,
we propose a charger placement algorithm to enable the
high-power interference enhanced regions to appear close
to PoIs. We then design a sensor deployment algorithm
to locate each sensor to the highest-power point within
the deployable range.

• We conduct extensive simulations and field experiments
to verify the proposed scheme. Results show that our
scheme outperforms other comparison algorithms by
40.48% on average in charging utility.

The rest of this paper is organized as follows. We present
the concurrent charging model with wave interference and
formulate the problem in Section II. Section III and Section IV
propose a charger placement algorithm and a sensor deploy-
ment algorithm, respectively. Section V shows the theoretical
analysis. Section VI gives the simulation results and the
discussion issue. Section VII shows the experimental results.
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TABLE I: Symbols and definitions

Symbols Definitions

oi ith PoI on a 2D plane, or its location
si ith omnidirectional sensor, or its location
cj jth omnidirectional wireless charger, or its position
N Number of PoIs/sensors
M Number of wireless chargers to be deployed
Ci Subset of the chargers that can concurrently charge si
dij Euclidean distance between sensor si and charger cj

Psi|Ci
The combined power arrived at si from Ci

λ The wavelength
D Farthest charging distance
Pth Power threshold for charging utility function
r radius of the sensor deployable disk

We review related work in Section VIII. Finally, we conclude
the paper in Section IX.

II. PRELIMINARIES

In this section, we give the network model, charging model
with wave interference, utility model and problem formulation.
Important notations and definitions in our work are listed in
Table I.

A. Network Model

Consider there are N PoIs denoted as O = {o1, o2, ..., oN}
on a 2D plane Ω. Each PoI has a sensor deployable disk (SDD)
centered at itself with radius of r to deploy a sensor. All
omnidirectional sensors are denoted by S = {s1, s2, ..., sN}.
If no confusion arises, we still use si to denote the location
of sensor si.

A given number of omnidirectional wireless chargers C =
{c1, c2, ..., cM} are employed to provide charging service for
sensors, we still use cj to represent the placement position
of cj . When both chargers and sensors are deployed, each
sensor si will be concurrently charged by a subset of the
chargers, denoted by Ci(Ci ⊆ C). The number of the
chargers in Ci is denoted by mi(mi ≤ M). Moreover, we
use dij and Psi|Ci

to represent the Euclidean distance between
sensor si and charger cj and the combined power arrived at si
from Ci, respectively.

B. Charging Model

To mathematically explain the complicated power distribu-
tion, a practical charging model with the wave interference
needs to be established. First, we present the radio wave
radiated by the charger cj as:

A(t) = A0 cos 2πft, (1)

where A0, f are amplitude and frequency of this wave, respec-
tively. Since the amplitude of the radio emitted by cj decreases
with the distance, the wave arrived at si can be written as:

Asi(t) =
A0

d̂ij
cos(2πft− 2π

λ
dij). (2)

In this equation, d̂ij =
dij+β√

α
is the attenuation factor

for wave propagation due to the empirical model in [31],

the α = GsGr

Lp
( λ
4π )

2, where Gs, Gr are charger and sensor
antenna gain, respectively, and λ is the wavelength. β is a
parameter to adjust the Friis’ free space equation for short
distance transmission.

Thus, when si covered by a single charger cj , the wave
received by si satisfies the Equation (2). Moreover, its average
power can be expressed as:

p(si, cj) =
1

T

∫ T
2

−T
2

[Asi(t)]
2dt

=
1

T

∫ T
2

−T
2

[
A0

d̂ij
cos(2πft− 2π

λ
dij)

]2
dt =

A2
0

2d̂ij
2 ,

(3)
where T is the period of the radio wave. Since the power
quadratically decreases with the charging distance, we denote
by D the farthest charging distance, i.e., if the distance
between charger and sensor is greater than D, the arriving
power can neither enable the sensor to receive non-negligible
energy, nor make an obvious effect on interference.

When mi chargers concurrently charge si, the combined
wave arrived at si can be written as:

Asi|Ci
(t) = Ai

0 cos(2πft− ϕ)

=

mi∑
j=1

A0

d̂ij
cos(2πft− 2π

λ
dij),

(4)

where Ai
0 =

[
miA

2
0 + 2A2

0

∑mi

j>k

∑mi

k=1 cos(2π
dij−dik

λ )

] 1
2

represents the amplitude of the combined power arrive at si
and ϕ is the phase.

Thus, the average power of the combined wave at si is:

Psi|Ci
=

1

T

∫ T
2

−T
2

[Asi|Ci
(t)]2dt

=
1

T

∫ T
2

−T
2

[ mi∑
j=1

A0

d̂ij
cos(2πft− 2π

λ
dij)

]2
dt

=
A2

0

2

mi∑
j=1

1

d̂ij
2 +

mi∑
j>k

mi∑
k=1

2 cos(2π
dij−dik

λ )

d̂ij d̂ik

 .

(5)

From Equation (5), we can see the complexity behind the
power distribution: for the charger set Ci which concurrently
charges si, each wave radiated from each charger interferes
with the other mi − 1 waves. Specifically, if these mi waves
constructively interfere at si, the distance difference between
any two chargers and si is kλ(k ∈ N ) and the combined
power Psi|Ci

at si will be significantly greater than the
additive power of waves; on the contrary, if these mi waves
destructively interfere at si, the distance difference between
any two chargers and si is k + 1

2λ(k ∈ N ) and Psi|Ci
will

be weakened, even as low as 0. Generally, the model in
Equation (5) is totally consistent with our observations from
Fig. 2.

C. Charging Utility Model

In practical, rechargeable sensors typically have a rated
power Pth constrained by electric circuits. Accordingly, we
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present the charging utility for a single sensor si with the
received power Psi|Ci

is given by

u(Psi|Ci
) =


1

Pth
· Psi|Ci

, Psi|Ci
≤ Pth,

1, Psi|Ci
> Pth.

(6)

In this model, the normalized charging utility is first pro-
portional to the received power, and then becomes constant
when the received power is larger than the threshold Pth.

D. Problem Formulation

In this work, our goal is to design a concurrent charging
scheme to maximize the overall charging utility for all sensors
by utilizing the high power caused by the wave interfer-
ence. Formally, we define the concurrent charGing utility
mAxImizatioN (GAIN) problem as follows.

(P1) max U(total) =

N∑
i=1

u(Psi|Ci
),

s.t. cj , si ∈ Ω, ||oisi|| ≤ r.

(7)

III. SOLUTION FOR THE CHARGER PLACEMENT

In this section, we aim to propose a charger placement
algorithm to maximize the overall additive power arrived at
all PoIs, whose resulting power distribution can be used as a
reference for deploying sensors. The rationale behind is that
only when the power of waves involved in interference is high,
can the power of combined waves be high enough.

A. Extract Maximal Covering Sets and Corresponding Can-
didate Charger Placement Areas

In order to cover all PoIs by using a limited number
of chargers, in this subsection, we first define the Maximal
Covering Set (MCS) to indicate the representative sets of PoIs,
and their corresponding candidate charger placement areas.
Instead of enumerating all positions on the plane, our objective
here is to obtain finite candidate charger placement areas from
the plane by extracting MCSs.

Generally, due to geometric symmetry, if a charger cj is
located within a circle centered at oi with radius D, which we
call the charger placeable circle of oi, the PoI oi is also located
within the circle centered at cj with radius D. Thus, when cj
is located within the overlap of multiple charger placeable
circles, corresponding PoIs can be concurrently covered.

Based on the relationship between position of each charger
and the PoIs it covers, we have the following definitions:

Definition 1. Maximal Covering Set: given a set of PoIs Oi

that covered by a charger located at ci, if there does not exist
a cj when charger locates at such that Oj ⊃ Oi, then Oi is
called Maximal Covering Set (MCS).

Definition 2. Candidate Charger Placement Area: given an
MCS, if there is an area, no matter where a charger is placed
in it, all PoIs in the MCS can be covered by this charger,
then this area is called the corresponding candidate charger
placement area of the MCS.
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Fig. 3: The construction of Maximal Covering Sets (MCSs).
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Fig. 4: Candidate areas discretization.

As placing chargers at candidate charger placement areas of
MCSs is always better than placing at the corresponding areas
of its subsets, we focus on how to extract all MCSs as well
as their corresponding candidate charger placement areas. The
extracting process is detailed in lines 1-8 in Algorithm 1.

Fig. 3 depicts an example for three PoIs o1, o2, and o3, and
the overlap area is divided into 4 subareas, A, B, C, and γ.
Obviously, when a charger locates anywhere in γ can it covers
{o1, o2, o3}. Thus, the MCS in Fig. 3 is {o1, o2, o3}, and its
corresponding candidate charger placement area is γ.

B. Discretizing for the Candidate Charger Placement Areas

Note that candidate charger placement areas are continuous,
there are infinite available locations for placing each charger.
To reduce the infinite solution space to a limited one without
performance loss, in this subsection, we discrete each candi-
date charger placement area to a limited number of candidate
subareas Γ, by using a piecewise constant function p̃(d) to
approximate the nonlinear charging power.

Theorem 1. Define the piecewise constant function p̃(d) as

p̃(d) =


p(l(1)), d = l(0),

p(l(q)), l(q − 1) < d ≤ l(q)(q = 1, 2, ..., Q− 1),

0, d > l(Q),
(8)
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Algorithm 1 Extraction of MCSs and candidate subareas

Input: The set of PoIs O, the farthest charging distance D, the error
threshold ϵ, and the constant β

Output: All MCSs and the candidate subarea set Γ
1: for each PoI oi ∈ O do
2: Draw a circle centered at oi with radius D;
3: end for
4: for each area divided by the circles do
5: Calculate the corresponding covered sensor set;
6: Add the covered sensor set into the set of candidate MCS;
7: end for
8: Identify all MCSs and the corresponding candidate charger

placement areas from the set of candidate MCS;
9: Calculate the number of segments Q and draw Q concentric

circles centered at each PoI;
10: for each candidate charger placement area do
11: Obtain all candidate subareas and add them into the candidate

subareas set Γ;
12: end for
13: Return MCSs and the candidate subareas set Γ;

where l(0) = 0, l(Q) = D, and l(q) = β((1 + ϵ)q/2 −
1), (q = 1, 2, ..., Q − 1) (therefore Q = ln[(D+β)2/β2]

ln(1+ϵ) ), the
approximation error is subject to

1 ≤ p(d)

p̃(d)
≤ 1 + ϵ, d ≤ D, (9)

where ϵ is a predetermined error threshold.

Proof: Supposed we have l(k − 1) < d ≤ l(k) for the
distance d, then we can get p(l(k)) ≤ p(d) < p(l(k − 1))
due to the monotonicity of power concerning distance. Thus,
on one hand, p(d)

p̃(d) = p(d)
p(l(k)) ≥ p(l(k))

p(l(k)) = 1; on the

other hand, p(d)
p̃(d) = p(d)

p(l(k)) ≤ p(l(k−1))
p(l(k)) = (l(k)+β)2

(l(k−1)+β)2 =
(β((1+ϵ)k/2−1)+β)2

(β((1+ϵ)(k−1)/2−1)+β)2
= 1 + ϵ. Then the result follows.

According to the predetermined approximation error thresh-
old ϵ, Q concentric circles with increasing radius l(1), l(2),
..., l(Q) centered at each PoI can be drawn. Apparently, a
charger placed at any point between two adjacent circles with
radius l(q) and l(q−1) provides the same power p(l(q)) with
a uniform approximation ratio.

Fig. 4 shows an instance of a candidate charger placement
area is divided into 4 candidate subareas, γ1, γ2, γ3, and γ4,
by drawing concentric circles centered at each PoI o1, o2,
and o3 with radius l(1) and l(2), respectively. If a charger is
placed at any point in the same subarea, the power it provides
is approximately the same. Therefore, by selecting a point
randomly in each subarea, we can obtain a set of candidate
placement positions also be denoted as Γ by abuse of notation.
The details of the discretizing for candidate charger placement
areas is described in lines 9-13 in Algorithm 1.

C. Selection for Charger Placement Positions

In this subsection, we elaborate on how to select the charger
placement positions from the obtained candidate set Γ such
that the overall additive power arrived at all PoIs can be
maximized, where xj is a boolean value that determines

Algorithm 2 Charger placement algorithm

Input: The number of chargers M , all candidate MCSs and their
corresponding candidate positions set Γ, the set of PoIs O, and
the objective function Paddit(C)

Output: Charger placement position set C
1: C = ∅
2: while |C| ≤M do
3: c∗ ← argmaxc∈Γ\C(Paddit(C ∪ {c})− Paddit(C));
4: C = C ∪ {c∗};
5: end while

whether to select this candidate position cj to place charger
or not. The overall additive power Paddit(C) arrived at all PoIs
can be calculated as:

Paddit(C) =

N∑
i=1

∑
cj∈Γ

xj p̃(oi, cj). (10)

Note that, our ultimate goal is to deploy the sensor to
constructive locations for obtaining high power after placing
the chargers. Thus, the constraint on maximizing Paddit(C) is:
the power of the combined wave at each PoI is not larger than
the sensor’s power threshold Pth when all individual arriving
waves are constructive interference.

Due to the Paddit(C) function properties given in Section V,
we use a greedy-based algorithm to greedily select the position
that maximizes the marginal gain of the function Paddit(C)
in each iteration. This process will stop if all chargers are
deployed. The detailed charger placement algorithm is given
in Algorithm 2.

IV. SOLUTION FOR THE SENSOR DEPLOYMENT

In this section, we present our sensor deployment algorithm
to maximize the overall charging utility. Note that though
the range of SDDs is limited, the solution space is unlimited
due to the continuous values of available locations for sensor
deployment. To tackle this problem, our basic idea is to find
a limited number of interference enhanced regions in SDDs,
and select the points with the highest power as the sensor
deployment location from these limited regions, so as to
reduce the solution space from infinite to finite. Thus, it is
essential to clarify the power distribution regularity caused by
the nonlinear interference of multiple chargers.

We start by considering a basic situation of the PoI covered
by only two chargers, and explore the method to find the
optimal sensor locations. After that, we will further develop a
solution for a complex situation, that is the PoI concurrently
covered by multiple chargers (more than 2 chargers).

A. PoI Covered Concurrently by Two Chargers

First, we give the following theorem to explain the power
distribution regularity of the area covered by two chargers.

Theorem 2. The interference enhanced and weakened regions
alternate in fringes in the overlap concurrently covered by two
chargers.
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Proof: Assume there are two chargers randomly placed
on a 2D plane. Note that constructive interference occurs when
the path difference of the two waves radiated by chargers is
kλ(k ∈ N, 0 ≤ k ≤ ⌊dc1c2

λ ⌋). Thus, given a k, we can find a
hyperbola (i.e., constructive curve) on the plane that satisfies
the distance difference between any point on the hyperbola
and the two chargers equals kλ. Correspondingly, there is
also a hyperbola (i.e., destructive curve) beside. The distance
difference between the point on it and the two chargers is
(k + 1/2)λ. In the middle of these two adjacent curves, a
hyperbola at which the power of combined waves arrived will
neither increase nor decrease due to the interference bisects
them and the distance difference equals (k+1/4)λ. Thus, this
hyperbola divides the region between adjacent constructive and
destructive curves into interference enhanced and weakened
regions, respectively. With various k, the overlap is partitioned
into multiple interference enhanced and weakened regions
alternating in fringes.

Fig. 5 depicts the power distribution in the overlap covered
by two chargers. It can be seen that there are total 9 fringe-
shaped interference enhanced regions in the overlap, and each
region has a constructive curve in middle (yellow solid line).
Since the combined power will be significantly increased when

two waves arrive at any point on the constructive curve,
we pay close attention to the position relationships between
constructive curves and the SDD of each PoI. Based on this,
we try to find the optimal sensor deployment location with
highest power from a limited number of interference enhanced
regions. According to the number of constructive curves going
through the SDD, there are three cases for selecting the
optimal sensor locations.

Case 1: The number of constructive curves passing through
the SDD is zero (see Fig. 6a). In this case, the highest-
power location in the SDD is the point on the circumference
closest to the constructive curve. Then, we can obtain the
optimal deployment location with the highest power by solving
the minimum distance problem for separated hyperbolas and
circle (red dot in Fig. 6a).

Case 2: The number of constructive curves passing through
the SDD is only one (see Fig. 6b). In this case, our basic
idea here is to find the corresponding highest-power point
from each interference enhanced regions in the SDD. Then,
we choose an optimal point from these limited points as the
sensor deployment location. Specifically, for the interference
enhanced region with constructive curve passing through, our
solution is to find the point closest to the two chargers on
the constructive curve as the highest-power point. Thus, we
draw a straight line by connecting c1, c2. If the constructive
curve intersects with c1c2 in the SDD, the highest-power point
is the intersection of them. Otherwise, the point must be on
the circumference of the SDD. For the interference enhanced
region without constructive curve passing through, we can use
the method in Case 1 to find the highest-power point on the
circumference closest to the corresponding constructive curve.
Then, we compare the power of these limited points and select
the highest one as the sensor deployment location (red dot in
Fig. 6b).

Case 3: The number of constructive curves passing through
the SDD is more than one (see Fig. 6c). In this case, we
aim to find the corresponding highest-power point on each
constructive curve and in each interference enhanced region
without constructive curve passing through, respectively. Then,

(a) Case 1: The number of constructive
curves passing through the SDD is zero.

(b) Case 2: The number of constructive
curves passing through the SDD is only
one

(c) Case 3: The number of constructive
curves passing through the SDD is more
than one.

Fig. 6: An example for finding sensor deployment location in the overlap covered by three chargers.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JUNE 2023 7

0m 1m 2m 3m

1m

2m

3m

Fig. 7: The power distribution in the overlap covered by three
chargers.

we compare the power of these limited points and select an
optimal one to deploy sensor (red dot in Fig. 6c).

B. PoI Covered Concurrently by Multiple Chargers

Next, we consider the complex situation that PoI is covered
concurrently by multiple chargers (more than 2 chargers).
Generally, when m(m > 2) chargers concurrently cover a PoI,
m waves will be interfering with each other, which obviously
makes the wave interference complicated. In order to reveal
the power distribution regularity caused by the interference
of multiple waves and help us design a feasible and effective
sensor deployment method, we first consider the case where
a PoI is covered by three chargers, and then we extend the
solution to the scenario where the PoI is covered by more
than 3 chargers.

(1) Solution for PoI covered concurrently by 3 chargers.
To develop a sensor deployment method, we first give the

following theorem to explore the regularity of the power
distribution in the area covered by three chargers.

Theorem 3. The interference enhanced regions are distributed
in spots in the overlap concurrently covered by three chargers.

Proof: Assume there are three chargers c1, c2, and c3
randomly placed on a 2D plane. Let any constructive curve
of c1 and c2 denoted as f(c1c2), any constructive curve of
c1 and c3 denoted as f(c1c3) intersect at a point a. If we
denote the distance between a and c1 as dac1 = d, then the
distance between a and c2, a and c3 is dac2 = d + k1λ,
dac3 = d + k2λ, k1, k2 ∈ N , respectively. What we found
is that the distance difference between a and c2, a and c3
denoted as ∆d = dac2 − dac3 = (k1 − k2)λ, which is
exactly the integer multiples of wavelength. This suggests the
point a is also located on the constructive curve of c2 and
c3 denoted as f(c2c3), that is, f(c2c3) passes through the
intersection of f(c1c2) and f(c1c3). Therefore, we can see
that the intersection formed by any two constructive curves
must be passed by the third constructive curve, i.e., the radio
waves radiated by the three chargers will inevitably interfere
constructively at a point. Furthermore, in the region around this
constructive point, the combined power will also be enhanced
to some degrees. As a result, in the overlap concurrently
covered by three chargers, the interference enhanced regions
are spot-shaped.

Fig. 7 shows the power distribution in the overlap covered
by three chargers. We can see the interference enhanced
regions distribute in spots. In order to take full advantage of
the high power of interference enhanced regions, similar to the
case covered by two chargers, we still focus on the position
relationships between each SDD and the spots, and try to find
the sensor deployment location with the highest power from a
limited number of spot-shaped interference enhanced regions.
According to the number of constructive spots located in the
SDD, there are three different cases for selecting the optimal
sensor locations.

Case 1: The number of constructive spots located in the SDD
is zero (see Fig. 8a). In this case, we find the point on the
circumference closest to the corresponding constructive points
outside the SDD as the optimal sensor deployment location
(red dot in Fig. 8a).

Case 2: The number of constructive spots located in the SDD
is only one (see Fig. 8b). Similar to Case 1, We first find a
point on the circumference of the SDD that is closest to the

(a) Case 1: The number of constructive
spots located in the SDD is zero.

(b) Case 2: The number of constructive
spots located in the SDD is only one.

(c) Case 3: The number of constructive
spots located in the SDD is more than
one.

Fig. 8: An example for finding sensor deployment location in the overlap covered by three chargers.
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Algorithm 3 Sensor deployment algorithm

Input: The set of chargers C, the set of PoIs O, the number of
sensors N , and the radius r of SDDs

Output: Sensor deployment location set S
1: S = ∅
2: for each PoI oi ∈ O do
3: if oi is covered by only one charger then
4: select oi as the sensor deployment location si;
5: else if the number of chargers concurrently cover oi is two

then
6: Find the corresponding highest-power point on each con-

structive curve passing through the SDD and the point on
the SDD’s circumference closest to the constructive curve
outside the SDD;

7: Compare the power of these points and select the highest
one as the sensor deployment location si;

8: else
9: Find all intersections of any three curves in the SDD and

the point on the circumference of the SDD closest to the
intersections of any three curves outside the SDD;

10: Compare the power of these points and select the highest
one as the sensor deployment location si;

11: end if
12: S = S ∪ {si};
13: end for

constructive spots outside the SDD. Then, we calculate the
power of this point and the only constructive spot in the SDD
respectively, and select the point with the higher power as the
optimal sensor location (red dot in Fig. 8b).

Case 3: The number of constructive spots located in the SDD
is more than one (see Fig. 8c). In this case, the points we
need to compare include all constructive spots in the SDD,
and the point on the circumference of the SDD closest to the
constructive spots outside the SDD. The point which has the
highest power is the optimal sensor deployment location (red
dot in Fig. 8c).

(2) Solution for PoI covered concurrently by more than 3
chargers.

When PoI is covered by m(m > 3) chargers concurrently,
how these constructive curves intersect is a complicated prob-
lem, since the number of curves that can intersect at a certain
point varies from 2 to C(m, 2). Obviously this makes it
extremely difficult to find the highest-power point in the SDD.
Fortunately, the regularity of the spotted power distribution
covered by 3 chargers provides a way for us to design a
feasible and effective sensor deployment method.

Note that, when a PoI is concurrently covered by 3 chargers,
the constructive curves formed by each pair of chargers will
always intersect at a point according to Theorem 3. Though
when more chargers interfere with each other introducing more
curves accordingly, there will inevitably be points interacted
by more than 3 curves, we actually can regard this point as
a 3-curve intersection that happens to be passed by other
constructive curves. Thus, we take the scenario covered by
three chargers as the basis of the more complex situation.

Based on the above analysis, for the problem of deploying
sensors in the SDD concurrently covered by more than 3

chargers, our basic idea is to find all intersections of any three
curves in the SDD and the point on the circumference of the
SDD closest to the intersections of any three curves outside
the SDD. Then we compare the power of them and select
the point with the highest power as the sensor deployment
location. Considering the SDD is very limited as well the
minimum distance between adjacent constructive curves is also
λ/2, then the number of intersections formed by any three
curves appearing in the SDD is also limited, which guarantees
the efficiency of our sensor deployment algorithm.

The detailed process of sensor deployment algorithm is
given in Algorithm 3.

V. THEORETICAL ANALYSIS
In this section, we analyze the NP-Hardness of GAIN

problem, the area discretization error, prove the properties of
the additive power function and the performance bounds of
Algorithm 2.

A. NP-Hardness of GAIN Problem

Theorem 4. The GAIN problem P1 is NP-hard.

Proof: We consider a special case of GAIN, named
GAIN-S, by setting the radius of SDDs r to 0. We show that
the decision version of GAIN-S is NP-hard, and so is GAIN.
For GAIN-S, all sensors are deployed at the corresponding
PoIs. Accordingly, each sensor can be regarded as a point.
We assume the charging utility of each sensor is 1, as long
as it is covered by one or more chargers. Thus, the GAIN-
S problem changes to the problem of covering most points
by M disks with uniform radius D. This problem is indeed
a partial disk coverage problem, which has been proved to
be NP-complete [30], [32]. Thus, we can see that GAIN-S
problem is NP-hard. The theorem thus follows.

B. Area Discretization Error

Theorem 5. Let p̃(oi, cj) be the approximated charging power
arriving PoI oi, we have the approximation error as:

1 ≤ p(oi, cj)

p̃(oi, cj)
≤ 1 + ϵ. (11)

Proof: we omit the proof due to space limitations.

C. Additive Power Function Theoretical Analysis

Definition 3. (Nonnegativity, Monotonicity, and Submod-
ularity [33]) Let E be a finite set, a function is defined
as f : 2E → R, f is called nonnegative, monotone and
submodular if and only if it satisfies following conditions,
respectively.

• f(∅) = 0 and ∀X ⊆ E : f(X) ≥ 0 (nonnegative);
• ∀X ⊆ Y ⊆ E =⇒ f(X) ≤ f(Y ) (monotone);
• ∀X,Y ⊆ E and e ∈ E\Y : f(X ∪{e})−f(X) ≥ f(Y ∪

{e})− f(Y ) (submodular).

Then, we have the following lemma:

Lemma 1. The function Paddit(C) is nonnegative, monotone,
and submodular.
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Proof: By Definition 3, we need to check whether
Paddi(C) in Equation (10) satisfies the three listed conditions.

First, when there is no charger on the 2D plane to emit
power for sensors, i.e., C = ∅, the power arrived at any
PoI is zero, then we have Paddi(C) = 0. And clearly the
first condition holds for Paddi(C), that is, all chargers provide
nonnegative charging power for sensors.

Second, we check whether the monotonicity holds for
Paddi(C). When a new candidate charger placement position
is selected, the overall additive power will increase because
Paddi(C) defined in Equation (10) is non-decreasing. For-
mally, for all C ′′ ⊆ C ′ ⊆ C, we have

Paddi(C
′′) =

N∑
i=1

C′′∑
j=1

p(oi, cj)

≤
N∑
i=1

C′∑
j=1

p(oi, cj) = Paddi(C
′).

(12)

Therefore, the Paddi(C) function satisfies monotonicity.
Third, for charger cj ∈ C\C ′, we give a specific analysis

that Paddi(C) is submodular by proving

Paddi(C
′′∪{cj})−Paddi(C

′′) ≥ Paddi(C
′∪{cj})−Paddi(C

′).
(13)

To prove this, we only need to prove that for any oi(0 ≤ i ≤
N), we have

[Paddi(C
′′ ∪ {cj}, oi)− Paddi(C

′′, oi)]

− [Paddi(C
′ ∪ {cj}, oi)− Paddi(C

′, oi)] ≥ 0,
(14)

and we can easy to get

Paddi(C
′′, oi) ≤ Paddi(C

′, oi). (15)

from the second condition.
Considering our constraint on the charger position selection

process, which aims to ensure that the power of the combined
wave at each PoI does not surpass the sensor’s power threshold
Pth when all individual arriving waves exhibit constructive in-
terference. It follows that C ′ consistently reaches the threshold
earlier than C ′′. This is due to the fact that only when the
power of the waves involved in interference is sufficiently
high, the power of the combined waves can also be high
enough. Then, we prove it with three cases:
Case 1: oi reached the threshold under the placement of both
C ′ and C ′′ before placing the charger cj .

Paddi(C
′′ ∪ {cj}, oi)− Paddi(C

′′, oi)

= Paddi(C
′ ∪ {cj}, oi)− Paddi(C

′, oi) = 0.
(16)

Case 2: oi reached the threshold under the placement of C ′,
while did not reach the threshold under C ′′ before placing the
charger cj .

Paddi(C
′′ ∪ {cj}, oi)− Paddi(C

′′, oi)

> Paddi(C
′ ∪ {cj}, oi)− Paddi(C

′, oi) = 0.
(17)

Case 3: oi did not reach the threshold under the placement of
C ′ or C ′′ before placing the charger cj .

Paddi(C
′′ ∪ {cj}, oi)− Paddi(C

′′, oi)

= Paddi(C
′ ∪ {cj}, oi)− Paddi(C

′, oi) = p(oi, cj).
(18)

Then, Paddi(C) is proved to be submodular, and we thus finish
the proof that our objective function Paddi(C) is nonnegative,
monotone and submodular.

D. Approximation Ratio of Algorithm 2
Theorem 6. The charger placement algorithm achieves an
approximation ratio of 1− 1/e− ϵ.

Proof: First, by the fact that the greedy algorithm to
solve the monotone submodular function maximization prob-
lem achieves 1 − 1/e approximation ratio. Therefore, the
approximate ratio of Algorithm 2 is also 1 − 1/e. Let Γ∗

denote the set of positions of all M chargers under the optimal
solution to the charger placement problem. Then we have:

N∑
i=1

∑
cj∈Γ

xj p̃(oi, cj) ≥ (1− 1

e
)

N∑
i=1

∑
cj∈Γ∗

xj p̃(oi, cj). (19)

According to Theorem 5, we have p̃(oi, cj) ≥ 1
1+ϵp(oi, cj).

Then, by the property of the objective function, we have:
N∑
i=1

∑
cj∈Γ

xj p̃(oi, cj) ≥ (1− 1

e
)(

1

1 + ϵ
)

N∑
i=1

∑
cj∈Γ∗

xjp(oi, cj)

≥ (1− 1

e
− ϵ)

N∑
i=1

∑
cj∈Γ∗

xjp(oi, cj).

(20)
Hence, the approximate ratio of the charger placement

algorithm is 1− 1
e − ϵ.

VI. SIMULATIONS

In this section, we conduct extensive simulations. The
simulation results are provided to validate our analysis and
demonstrate the performance of our algorithms.

A. Simulation Setup
We consider a WRSN consisting of 15 PoIs, which are

randomly distributed on a 2D plane of 20m × 20m. Each PoI
has a sensor deployable disk (SDD) centered at itself with a
radius of 10cm to deploy a sensor equipped with an omnidi-
rectional antenna. We also have 10 omnidirectional chargers,
the farthest charging distance D = 4m. The wavelength is
set to λ = 0.33m according to the commercial off-the-shelf
TX91501 wireless charger produced by Powercast [34] and
the energy transmission power of the charger is 3W [7], [35],
[36]. Other relative parameters are set as: α = 100, β = 40,
ϵ = 0.2, and Pth = 10mW.

TABLE II: Simulation setup

Parameters Values

Number of PoIs/sensors N 10 to 20
Number of chargers M 5 to 12
Network area Ω 20m × 20m
Charging distance D 4m
Charging threshold Pth 10mW
Charging power 3W
Approximation error ϵ 0.2
The wavelength λ 0.33m
Charging parameters α, β 100, 40
Redius of SDD r 10cm
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Fig. 9: M vs. charging utility

0 4 8 12 16 20

5

6

7

8

2.0 2.5 3.0 3.5 4.0
3

6

9

12

15

0 5 10 15 20
6

9

12

15

10 12 14 16 18 20

5

10

15

20

5 6 7 8 9 10 11 12

3

6

9

12

15

 GAIN

C
ha

rg
in

g 
ut

il
it

y

Radius of SDDs (cm)

Farthest charging distance (m)

 GAIN  BCCSP
 RCP  DSP

C
ha

rg
in

g 
ut

il
it

y

 GAIN  BCCSP
 RCP  DSP

C
ha

rg
in

g 
ut

il
it

y

Radius of SDDs (cm)

 GAIN  BCCSP
 RCP  DSP

C
ha

rg
in

g 
ut

il
it

y

Number of PoIs

Number of chargers

 GAIN  BCCSP
 RCP  DSP

C
ha

rg
in

g 
ut

il
it

y

Fig. 10: N vs. charging utility

B. Baseline Setup

To evaluate the performance of our GAIN scheme, we
compare it with the following three charging algorithms.
Balanced Concurrent Charging Scheduling Problem
(BCCSP) [23] is a charging scheduling algorithm aiming at
accelerating the concurrent charging. In one charging cycle, all
chargers are turned on in some order until all sensors are fully
charged. The overall charging utility BCCSP obtained can be
calculated as the energy all sensors received divided by the
cycle duration. Note that the amount of energy each sensor
received in one charging cycle is the battery capacity, thus
the charging utility yielded by each sensor is equal. Specially,
following the settings in [23], the battery capacity of each
sensor is set to 4mJ.
Randomized Charger Position (RCP) is a concurrent charg-
ing algorithm developed by us, which follows the same sensor
deployment strategy as GAIN but places chargers randomly.
Deployed Sensor on PoI (DSP) [14] is an omnidirectional
charger placement algorithm, which assumes the charging
power is additive from different chargers. To maximize the
overall additive power arrived at all PoIs, a greedy method
is employed to select charger placement positions. Since DSP
does not consider the effects of wave interference, all sensors
are deployed on corresponding PoIs.

C. Performance Comparisons

Impact of number of chargers M . Our simulation results
show that on average, GAIN outperforms BCCSP, RCP, and
DSP by 84.51%, 112.74%, and 25.72%, respectively, in terms
of M . Fig. 9 shows that the charging utility of all algorithms
increases as M grows. When fewer chargers are placed,
the GAIN and DSP have an obvious advantage since the
charger placement strategy of these two algorithms enables
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Fig. 11: D vs. charging utility
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Fig. 12: r vs. charging utility

as many as possible sensors to be covered. When M is larger,
locating sensors to the highest-power point guarantees the best
performance of our proposed scheme.

Impact of number of PoIs N . Our simulation results show
that on average, GAIN outperforms BCCSP, RCP, and DSP
by 42.50%, 34.48%, and 24.27%, respectively, in terms of
N . From Fig. 10, we can see that the overall charging utility
achieved by all algorithms increases with the number of PoIs.
Our scheme always maintains the best performance, which
suggests that our GAIN is robust to different PoI density.

Impact of farthest charging distance D. Our simulation
results show that on average, GAIN outperforms BCCSP, RCP,
and DSP by 79.38%, 102.02%, and 24.55%, respectively, in
terms of D. To guarantee the sensors covered by chargers
can receive non-negligible power, we set the farthest charging
distance D from 2m to 4m. Fig. 11 demonstrates that the
overall charging utility yielded by four algorithms shows an
increasing trend with D. The reason is that a larger D means
more sensors can be covered by chargers. It also can be seen
that the GAIN scheme achieves the best performance under
different D.

Impact of radius of SDDs r. Our simulation results show
that on average, GAIN outperforms BCCSP, RCP, and DSP
by 25.57%, 37.97%, and 20.95%, respectively, in terms of r.
Fig. 12 shows that the overall charging utility achieved by
GAIN first increases rapidly with r, but grows slowly when
r approaches 10. This suggests that even sensors can only be
deployed very close to the PoIs, the GAIN scheme is able to
find the deployment locations with the highest power. Besides,
without the elaborate charger placement strategy, the charging
utility of RCP grows slowly after r = 7.5cm, since the high-
power interference enhanced regions rarely appear around the
PoIs. While the BCCSP and DSP remain constant with r
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Fig. 13: Charging utility of 15 sensors.

because their sensor deployment locations are fixed at PoIs.

D. Insights

The fairness of GAIN. To verify the fairness of our GAIN
scheme, we record the charging utility obtained by 15 sensors
and plot the results in Fig. 13. We can see that the normalized
charging utility yielded by 12 sensors is 1, and only one
sensor obtains a charging utility less 0.5. Thus, the variance
of the normalized charging utility of GAIN is 0.0523, and
that of RCP and DSP reach 0.0902 and 0.1641, respectively.
In summary, we conclude that GAIN can obtain utility for
sensors with better fairness, which contributes to improving
the overall charging utility.
The scalability of GAIN. According to wave interference,
the distance between adjacent interference enhanced regions
is determined by wavelength. Obviously, the smaller the
wavelength, the more opportunities for enhanced regions to
appear close to PoIs. In our simulations, the wavelength is
set to λ = 0.33m according to the off-the-shelf TX91501
wireless charger, and we have verified that GAIN scheme can
achieve excellent charging performance by deploying sensors
to highest-power points within 10cm around PoIs. In the recent
emerging networks based on WiFi or Bluetooth (e.g., Wi-
TAN [37], SyncScatte [38], and PLatter [39]), sensors harvest
energy from RF signals with a frequency of 2.4GHz, and the
wavelength of the signals is only 0.12m. This means that our
GAIN can be well adapted to these emerging networks, and
locate sensors to the highest-power points very close to PoIs,
so as to achieve high-quality monitoring.

VII. FIELD EXPERIMENTS

To better verify the performance of our proposed GAIN
scheme, we conduct field experiments in this section.

A. Testbed

As Fig. 14 shows, our testbed consists of three wireless
chargers (TX91501 power transmitters produced by Power-
cast [34]) with λ = 33cm, eight rechargeable sensors and

Fig. 14: Testbed.PoI SDD Sensor
Charger 1 Charger 2 Charger 3

0 1 2 3

1

2

3

x (m)

y 
(m

)
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SDD
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Charger 3

Fig. 15: Illustration of the network.

an AP connecting to a laptop to record the collected data
from sensors. All sensors are deployed within the SDDs with
radius r = 10cm centered at corresponding PoIs in a 3m×3m
square areas, and their coordinates are (48, 152), (125, 226),
(120, 77), (196, 106), (205, 210), (248, 118), (260, 108), (262,
225) as shown in Fig. 15. We set D = 1.5m, Pth = 10mW.
Moreover, we eliminate the impact of randomness by taking
the same charger placement strategy for BCCSP with GAIN
and DSP for a better comparison. Since the TX91501 is a di-
rectional charger, we always rotate it to face the corresponding
sensor when necessary to record the experimental data, the
same method is used in many related work such as [3], [22],
[27], [40]. The field experiment can be seen in Fig. 16.

B. Experimental Results

Table III shows the overall charging utility for all algo-
rithms, and GAIN outperforms BCCSP, DSP, and RCP by
39.8%, 49.9%, and 87.2%, respectively. This verifies that
GAIN achieves the excellent performance by carefully se-
lecting the charger positions and locating each sensor to the
highest-power point in each SDD. It also can be seen that
BCCSP collects more charging utility than RCP and DSP do.
The reason is that BCCSP avoids the sensors located within the
interference weakened regions by turning off some chargers.
Since DSP assumes that the charging power is additive from
different chargers, and accordingly deploys all sensors on PoIs,
it gets the worst performance.
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Fig. 16: Field experiment.

TABLE III: Charging utility for four algorithms

GAIN BCCSP RCP DSP

charging utility 7.159 5.120 4.776 3.824

Fig. 17 shows the charging utility obtained by each sensor,
and we can see GAIN enables five sensors to obtain the highest
charging utility, and that obtained by the other three sensors is
also more than 0.5. This verifies the effectiveness and fairness
of our GAIN scheme.

VIII. RELATED WORK

In this section, we review the literature on wireless charger
placement and sensor deployment.

A. Wireless charger placement

In recent years, many wireless charger placement schemes
have been proposed. For example, Zhang et al. [14] em-
ployed omnidirectional chargers with adjustable power, jointly
determining the charger placement and corresponding power
allocation to maximize the charging utility. Dai et al. [16],
[17] proposed the first scheme for directional wireless charger
placement and correspondingly built the directional charging
models. Wang et al. [18] considered the problem of practical
heterogeneous wireless charger placement with obstacles, and
proposed a charger placement algorithm to maximize the
overall charging utility. Dai et al. [19] studied how to improve
the charging efficiency by placing wireless chargers with
limited mobility. Yu et al. [20] considered the communica-
tion need of wireless chargers to exchange information, they
studied the problem of determining the placement positions
and orientations for a given number of directional chargers
under connectivity constraint for chargers. Dai et al. [22] were
concerned with electromagnetic radiation (EMR) safety and
proposed a wireless charger placement scheme that guarantees
EMR safety for every location on the plane. Dai et al. [41]
studied the problem of wireless charger placement with mul-
tiple directional antennas. They tried to maximize the overall
charging utility by determining the chargers’ positions and the
antennas’ orientations. Wu et al. [42] paid close attention to
the advantages of multi-hop wireless charging. They designed
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Fig. 17: Charging utility of 8 sensors.

the cost-sharing mechanism for multi-hop wireless charging
and aimed to minimize the comprehensive cost consisting of
energy and deployment costs. However, all these work ignore
the wave interference and instead assume that the charging
power is additive from different chargers.

There are also a few researchers having realized the inter-
ference effect. Guo et al. [23] tried to enhance the charging
efficiency by scheduling (i.e., turn on/off) the chargers in
concurrent charging scenarios. Similar work has been reported
in [24], which also designed a charger scheduling algorithm.
However, turning off the chargers may not only reduce the
output on the energy supply side but also do not make full
use of the high power due to constructive interference.

B. Sensor deployment

Deploying sensors is a traditional issue in Wireless Sensor
Networks (WSNs), and much effort has been devoted to
improving the sensing, connectivity, and coverage quality. For
instance, Guo et al. [43] focused on optimizing the sensing
quality with a constraint of communication range by deploying
sensors. Boubrima et al. [44] studied how to use WSN
for air pollution mapping, and then they proposed a sensor
deployment algorithm. Karimi-Bidhendi et al. [45] studied
the node deployment problem in a heterogeneous two-tier
wireless sensor network consisting of heterogeneous access
points (APs) and fusion centers (FCs) and further considered
the condition that the communication range is limited. Saad et
al. [46] noticed a more practical scenario and studied the 3D
WSNs deployment problem. Fu et al. [47] studied the sensor
calibration problem. They achieved the k-hop calibration of all
sensors in the network by deploying high-precision reference
sensors. Xia et al. [48] were concerned about the network
connectivity and high deployment costs in existing underwa-
ter sensor networks, they proposed an optimization sensor
deployment algorithm that maximizes network coverage and
minimizes deployment costs while ensuring full connectivity.

IX. CONCLUSION

Wave interference is a typical physical phenomenon when
multiple chargers concurrently transmit power. In this work,
we explore the power distribution regularity of concurrent
charging and take full advantage of the high power caused
by wave interference accordingly to promote network per-
formance. To this end, we formulate the concurrent charging
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utility maximization problem and propose a scheme consisting
of a charger placement algorithm and a sensor deployment
algorithm to solve the problem. Extensive simulations are
conducted and the results show GAIN outperforms the com-
parison algorithms by 40.48% on average. Field experiments
also demonstrate the feasibility of GAIN in practical scenarios.

ACKNOWLEDGMENT

This work is partially supported by the National Nat-
ural Science Foundation of China (62072320, 62002250,
62162057, 61872254), the Natural Science Foundation of
Sichuan Province (2022NSFSC0569, 2022NSFSC0929), the
Key R&D Program of Sichuan Province (22ZDZX0021).

REFERENCES

[1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and
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